Thursday, September 11, 2025
No menu items!
HomeNatureThe emergence of globular clusters and globular-cluster-like dwarfs

The emergence of globular clusters and globular-cluster-like dwarfs

  • Brodie, J. P. & Strader, J. Extragalactic globular clusters and galaxy formation. Annu. Rev. Astron. Astrophys. 44, 193–267 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Simon, J. D. The faintest dwarf galaxies. Annu. Rev. Astron. Astrophys. 57, 375–415 (2019).

    Article 

    Google Scholar
     

  • Simon, J. D. et al. Timing the r-process enrichment of the ultra-faint dwarf galaxy Reticulum II. Astrophys. J. 944, 43 (2023).

    Article 

    Google Scholar
     

  • Ji, A. P., Frebel, A., Simon, J. D. & Chiti, A. Complete element abundances of nine stars in the r-process galaxy Reticulum II. Astrophys. J. 830, 93 (2016).

    Article 

    Google Scholar
     

  • Rodriguez, C. L. et al. The observed rate of binary black hole mergers can be entirely explained by globular clusters. Res. Not. Am. Astron. Soc. 5, 19 (2021).


    Google Scholar
     

  • Portegies Zwart, S. F., Baumgardt, H., Hut, P., Makino, J. & McMillan, S. L. W. Formation of massive black holes through runaway collisions in dense young star clusters. Nature 428, 724–726 (2004).

    Article 

    Google Scholar
     

  • Häberle, M. et al. Fast-moving stars around an intermediate-mass black hole in ω Centauri. Nature 631, 285–288 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bañares-Hernández, A., Calore, F., Camalich, J. M. & Read, J. I. New constraints on the central mass contents of Omega Centauri from combined stellar kinematics and pulsar timing. Astron. Astrophys. 693, A104 (2025).

    Article 

    Google Scholar
     

  • Evans, A. J., Strigari, L. E. & Zivick, P. Dark and luminous mass components of Omega Centauri from stellar kinematics. Mon. Not. R. Astron. Soc. 511, 4251–4264 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Carlberg, R. G. & Grillmair, C. J. The dark matter halo of M54. Astrophys. J. 935, 14 (2022).

    Article 

    Google Scholar
     

  • Wan, Z. et al. Dynamics in the outskirts of four Milky Way globular clusters: it’s the tides that dominate. Mon. Not. R. Astron. Soc. 519, 192–207 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Grudić, M. Y. et al. Great balls of FIRE – I. The formation of star clusters across cosmic time in a Milky Way-mass galaxy. Mon. Not. R. Astron. Soc. 519, 1366–1380 (2023).

    Article 

    Google Scholar
     

  • Ashman, K. M. & Zepf, S. E. The formation of globular clusters in merging and interacting galaxies. Astrophys. J. 384, 50–61 (1992).

    Article 

    Google Scholar
     

  • Sameie, O. et al. Formation of proto-globular cluster candidates in cosmological simulations of dwarf galaxies at z > 4. Mon. Not. R. Astron. Soc. 522, 1800–1813 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Naoz, S. & Narayan, R. Globular clusters and dark satellite galaxies through the stream velocity. Astrophys. J. Lett. 791, L8 (2014).

    Article 

    Google Scholar
     

  • Lake, W. et al. The Supersonic Project: star formation in early star clusters without dark matter. Astrophys. J. Lett. 956, L7 (2023).

    Article 

    Google Scholar
     

  • Peebles, P. J. E. & Dicke, R. H. Origin of the globular star clusters. Astrophys. J. 154, 891 (1968).

    Article 

    Google Scholar
     

  • Fall, S. M. & Rees, M. J. A theory for the origin of globular clusters. Astrophys. J. 298, 18–26 (1985).

    Article 
    CAS 

    Google Scholar
     

  • Kravtsov, A. V. & Gnedin, O. Y. Formation of globular clusters in hierarchical cosmology. Astrophys. J. 623, 650–665 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Peebles, P. J. E. Dark matter and the origin of galaxies and globular star clusters. Astrophys. J. 277, 470–477 (1984).

    Article 
    CAS 

    Google Scholar
     

  • Boley, A. C., Lake, G., Read, J. & Teyssier, R. Globular cluster formation within a cosmological context. Astrophys. J. Lett. 706, L192–L196 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Gutcke, T. A. Low-mass globular clusters from stripped dark matter halos. Astrophys. J. 971, 103 (2024).

    Article 

    Google Scholar
     

  • Mashchenko, S. & Sills, A. Globular clusters with dark matter halos. II. Evolution in a tidal field. Astrophys. J. 619, 258–269 (2005).

    Article 

    Google Scholar
     

  • Baumgardt, H. & Mieske, S. High mass-to-light ratios of ultra-compact dwarf galaxies – evidence for dark matter?. Mon. Not. R. Astron. Soc. 391, 942–948 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Vitral, E. & Boldrini, P. Properties of globular clusters formed in dark matter mini-halos. Astron. Astrophys. 667, A112 (2022).

    Article 

    Google Scholar
     

  • Kim, C.-G. & Ostriker, E. C. Momentum injection by supernovae in the interstellar medium. Astrophys. J. 802, 99 (2015).

    Article 

    Google Scholar
     

  • Agertz, O. et al. EDGE: the mass–metallicity relation as a critical test of galaxy formation physics. Mon. Not. R. Astron. Soc. 491, 1656–1672 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Larsen, S. S., Brodie, J. P., Huchra, J. P., Forbes, D. A. & Grillmair, C. J. Properties of globular cluster systems in nearby early-type galaxies. Astron. J. 121, 2974–2998 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Renaud, F., Agertz, O. & Gieles, M. The origin of the Milky Way globular clusters. Mon. Not. R. Astron. Soc. 465, 3622–3636 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Gray, E. I. et al. EDGE: a new model for nuclear star cluster formation in dwarf galaxies. Mon. Not. R. Astron. Soc. 539, 1167–1179 (2025).

    Article 

    Google Scholar
     

  • Kirby, E. N. et al. The universal stellar mass–stellar metallicity relation for dwarf galaxies. Astrophys. J. 779, 102 (2013).

    Article 

    Google Scholar
     

  • Rey, M. P. et al. EDGE: from quiescent to gas-rich to star-forming low-mass dwarf galaxies. Mon. Not. R. Astron. Soc. 497, 1508–1520 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Lahén, N., Naab, T. & Szécsi, D. Star clusters forming in a low-metallicity starburst – rapid self-enrichment by (very) massive stars. Mon. Not. R. Astron. Soc. 530, 645–667 (2024).

    Article 

    Google Scholar
     

  • Lahén, N. et al. The GRIFFIN project—formation of star clusters with individual massive stars in a simulated dwarf galaxy starburst. Astrophys. J. 891, 2 (2020).

    Article 

    Google Scholar
     

  • Calura, F. et al. Sub-parsec resolution cosmological simulations of star-forming clumps at high redshift with feedback of individual stars. Mon. Not. R. Astron. Soc. 516, 5914–5934 (2022).

    Article 

    Google Scholar
     

  • Schneider, A., Smith, R. E., Macciò, A. V. & Moore, B. Non-linear evolution of cosmological structures in warm dark matter models. Mon. Not. R. Astron. Soc. 424, 684–698 (2012).

    Article 

    Google Scholar
     

  • Lapi, A. et al. Astroparticle constraints from cosmic reionization and primordial galaxy formation. Universe 8, 476 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Bond, H. E. Where is population III? Astrophys. J. 248, 606–611 (1981).

    Article 
    CAS 

    Google Scholar
     

  • Trussler, J. A. A. et al. On the observability and identification of Population III galaxies with JWST. Mon. Not. R. Astron. Soc. 525, 5328–5352 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Martin, N. F. et al. A stellar stream remnant of a globular cluster below the metallicity floor. Nature 601, 45–48 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Errani, R. et al. The Pristine survey – XVIII. C-19: tidal debris of a dark matter-dominated globular cluster? Mon. Not. R. Astron. Soc. 514, 3532–3540 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Simon, J. D. et al. Eridanus III and DELVE 1: carbon-rich primordial star clusters or the smallest dwarf galaxies? Astrophys. J. 976, 256 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Hayes, C. R. et al. GHOST commissioning science results: identifying a new chemically peculiar star in Reticulum II. Astrophys. J. 955, 17 (2023).

    Article 

    Google Scholar
     

  • Jeon, M., Besla, G. & Bromm, V. Highly r-process enhanced stars in ultra-faint dwarf galaxies. Mon. Not. R. Astron. Soc. 506, 1850–1861 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Rey, M. P. et al. EDGE: the origin of scatter in ultra-faint dwarf stellar masses and surface brightnesses. Astrophys. J. Lett. 886, L3 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Rey, M. P. et al. EDGE: what shapes the relationship between H i and stellar observables in faint dwarf galaxies?. Mon. Not. R. Astron. Soc. 511, 5672–5681 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Orkney, M. D. A. et al. EDGE: the shape of dark matter haloes in the faintest galaxies. Mon. Not. R. Astron. Soc. 525, 3516–3532 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Eisenstein, D. J. & Hut, P. HOP: a new group-finding algorithm for N-body simulations. Astrophys. J. 498, 137 (1998).

    Article 

    Google Scholar
     

  • Knollmann, S. R. & Knebe, A. AHF: Amiga’s halo finder. Astrophys. J. Suppl. Ser. 182, 608 (2009).

    Article 

    Google Scholar
     

  • Katz, N. & White, S. D. M. Hierarchical galaxy formation: overmerging and the formation of an X-ray cluster. Astrophys. J. 412, 455–478 (1993).

    Article 

    Google Scholar
     

  • Ade, P. A. R. et al. Planck 2013 results. XVI. Cosmological parameters. Astron. Astrophys. 571, A16 (2014).

    Article 

    Google Scholar
     

  • Teyssier, R. Cosmological hydrodynamics with adaptive mesh refinement-A new high resolution code called RAMSES. Astron. Astrophys. 385, 337–364 (2002).

    Article 

    Google Scholar
     

  • Kravtsov, A. V., Klypin, A. A. & Khokhlov, A. M. Adaptive refinement tree: a new high-resolution N-body code for cosmological simulations. Astrophys. J. Suppl. Ser. 111, 73–94 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Pontzen, A. et al. EDGE: a new approach to suppressing numerical diffusion in adaptive mesh simulations of galaxy formation. Mon. Not. R. Astron. Soc. 501, 1755–1765 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Stopyra, S., Pontzen, A., Peiris, H., Roth, N. & Rey, M. P. GenetIC—a new initial conditions generator to support genetically modified zoom simulations. Astrophys. J. Suppl. Ser. 252, 28 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Roth, N., Pontzen, A. & Peiris, H. V. Genetically modified haloes: towards controlled experiments in ΛCDM galaxy formation. Mon. Not. R. Astron. Soc. 455, 974–986 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Rey, M. P. & Pontzen, A. Quadratic genetic modifications: a streamlined route to cosmological simulations with controlled merger history. Mon. Not. R. Astron. Soc. 474, 45–54 (2018).

    Article 

    Google Scholar
     

  • Rosen, A. & Bregman, J. N. Global models of the interstellar medium in disk galaxies. Astrophys. J. 440, 634 (1995).

    Article 

    Google Scholar
     

  • Agertz, O., Kravtsov, A. V., Leitner, S. N. & Gnedin, N. Y. Toward a complete accounting of energy and momentum from stellar feedback in galaxy formation simulations. Astrophys. J. 770, 25 (2013).

    Article 

    Google Scholar
     

  • Andersson, E. P., Agertz, O., Renaud, F. & Teyssier, R. INFERNO: galactic winds in dwarf galaxies with star-by-star simulations including runaway stars. Mon. Not. R. Astron. Soc. 521, 2196–2214 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Andersson, E. P., Agertz, O. & Renaud, F. How runaway stars boost galactic outflows. Mon. Not. R. Astron. Soc. 494, 3328–3341 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Steinwandel, U. P., Bryan, G. L., Somerville, R. S., Hayward, C. C. & Burkhart, B. On the impact of runaway stars on dwarf galaxies with resolved interstellar medium. Mon. Not. R. Astron. Soc. 526, 1408–1427 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Andersson, E. P. et al. EDGE-INFERNO: simulating every observable star in faint dwarf galaxies and their consequences for resolved-star photometric surveys. Astrophys. J. 978, 129 (2025).

    Article 

    Google Scholar
     

  • Dalla Vecchia, C. & Schaye, J. Simulating galactic outflows with kinetic supernova feedback. Mon. Not. R. Astron. Soc. 387, 1431–1444 (2008).

    Article 

    Google Scholar
     

  • Dalla Vecchia, C. & Schaye, J. Simulating galactic outflows with thermal supernova feedback. Mon. Not. R. Astron. Soc. 426, 140–158 (2012).

    Article 

    Google Scholar
     

  • Kravtsov, A. V. On the origin of the global Schmidt law of star formation. Astrophys. J. 590, L1–L4 (2003).

    Article 

    Google Scholar
     

  • Saitoh, T. R. et al. Toward first-principle simulations of galaxy formation: I. How should we choose star-formation criteria in high-resolution simulations of disk galaxies? Publ. Astron. Soc. Jpn. 60, 667–681 (2008).

    Article 

    Google Scholar
     

  • Hopkins, P. F. et al. Galaxies on FIRE (Feedback In Realistic Environments): stellar feedback explains cosmologically inefficient star formation. Mon. Not. R. Astron. Soc. 445, 581–603 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Rey, M. P. et al. EDGE: the emergence of dwarf galaxy scaling relations from cosmological radiation-hydrodynamics simulations. Mon. Not. R. Astron. Soc. 541, 1195–1217 (2025).

    Article 

    Google Scholar
     

  • Prgomet, M. et al. EDGE: the sensitivity of ultra-faint dwarfs to a metallicity-dependent initial mass function. Mon. Not. R. Astron. Soc. 513, 2326–2334 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Orkney, M. D. A. et al. EDGE: two routes to dark matter core formation in ultra-faint dwarfs. Mon. Not. R. Astron. Soc. 504, 3509–3522 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Orkney, M. D. A., Read, J. I., Petts, J. A. & Gieles, M. Globular clusters as probes of dark matter cusp-core transformations. Mon. Not. R. Astron. Soc. 488, 2977–2988 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Orkney, M. D. A. et al. EDGE: the puzzling ellipticity of Eridanus II’s star cluster and its implications for dark matter at the heart of an ultra-faint dwarf. Mon. Not. R. Astron. Soc. 515, 185–200 (2022).

    Article 

    Google Scholar
     

  • Klypin, A., Prada, F., Yepes, G., Heß, S. & Gottlöber, S. Halo abundance matching: accuracy and conditions for numerical convergence. Mon. Not. R. Astron. Soc. 447, 3693–3707 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Knebe, A. et al. Haloes gone MAD: The Halo-Finder Comparison Project. Mon. Not. R. Astron. Soc. 415, 2293–2318 (2011).

    Article 

    Google Scholar
     

  • Pujol, A. et al. Subhaloes gone Notts: the clustering properties of subhaloes. Mon. Not. R. Astron. Soc. 438, 3205–3221 (2014).

    Article 

    Google Scholar
     

  • Forouhar Moreno, V. J. et al. Assessing subhalo finders in cosmological hydrodynamical simulations. Preprint at https://arxiv.org/abs/2502.06932 (2025).

  • McInnes, L., Healy, J. & Astels, S. hdbscan: hierarchical density based clustering. J. Open Source Softw. 2, 205 (2017).

    Article 

    Google Scholar
     

  • Plummer, H. C. On the problem of distribution in globular star clusters. Mon. Not. R. Astron. Soc. 71, 460–470 (1911).

    Article 

    Google Scholar
     

  • Pontzen, A., Roškar, R., Stinson, G. & Woods, R. pynbody: N-body/SPH analysis for python (2013).

  • Pontzen, A. & Tremmel, M. TANGOS: the agile numerical galaxy organization system. Astrophys. J. Suppl. Ser. 237, 23 (2018).

    Article 

    Google Scholar
     

  • Girardi, L. et al. The ACS Nearby Galaxy Survey Treasury. IX. Constraining asymptotic giant branch evolution with old metal-poor galaxies. Astrophys. J. 724, 1030–1043 (2010).

    Article 

    Google Scholar
     

  • Marigo, P. et al. Evolution of asymptotic giant branch stars. II. Optical to far-infrared isochrones with improved TP-AGB models. Astron. Astrophys. 482, 883–905 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Kravtsov, A. V. The size–virial radius relation of galaxies. Astrophys. J. Lett. 764, L31 (2013).

    Article 

    Google Scholar
     

  • Pace, A. B. The Local Volume Database: a library of the observed properties of nearby dwarf galaxies and star clusters. Preprint at https://doi.org/10.48550/arXiv.2411.07424 (2024).

  • Kim, D. & Jerjen, H. A hero’s little horse: discovery of a dissolving star cluster in Pegasus. Astrophys. J. 799, 73 (2015).

    Article 

    Google Scholar
     

  • Torrealba, G., Belokurov, V. & Koposov, S. E. Nine tiny star clusters in Gaia DR1, PS1, and DES. Mon. Not. R. Astron. Soc. 484, 2181–2197 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Voggel, K. et al. Probing the boundary between star clusters and dwarf galaxies: a MUSE view on the dynamics of Crater/Laevens I. Mon. Not. R. Astron. Soc. 460, 3384–3397 (2016).

    Article 

    Google Scholar
     

  • Weisz, D. R. et al. A Hubble Space Telescope study of the enigmatic Milky Way halo globular cluster crater. Astrophys. J. 822, 32 (2016).

    Article 

    Google Scholar
     

  • Cerny, W. et al. Six more ultra-faint Milky Way companions discovered in the DECam Local Volume Exploration survey. Astrophys. J. 953, 1 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Martin, N. F. et al. SMASH 1: a very faint globular cluster disrupting in the outer reaches of the LMC? Astrophys. J. Lett. 830, L10 (2016).

    Article 

    Google Scholar
     

  • Mau, S. et al. A faint halo star cluster discovered in the Blanco Imaging of the Southern Sky Survey. Astrophys. J. 875, 154 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Balbinot, E. et al. A new Milky Way halo star cluster in the Southern Galactic Sky. Astrophys. J. 767, 101 (2013).

    Article 

    Google Scholar
     

  • Homma, D. et al. Boötes. IV. A new Milky Way satellite discovered in the Subaru Hyper Suprime-Cam Survey and implications for the missing satellite problem. Publ. Astron. Soc. Jpn. 71, 94 (2019).

    Article 

    Google Scholar
     

  • Mau, S. et al. Two ultra-faint Milky Way stellar systems discovered in early data from the DECam Local Volume Exploration survey. Astrophys. J. 890, 136 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Fadely, R. et al. Segue 3: an old, extremely low luminosity star cluster in the Milky Way’s halo. Astron. J. 142, 88 (2011).

    Article 

    Google Scholar
     

  • Muñoz, R. R. et al. A MegaCam survey of outer halo satellites. III. Photometric and structural parameters. Astrophys. J. 860, 66 (2018).

    Article 

    Google Scholar
     

  • Conn, B. C., Jerjen, H., Kim, D. & Schirmer, M. On the nature of ultra-faint dwarf galaxy candidates. I. DES1, Eridanus III, and Tucana V. Astrophys. J. 852, 68 (2018).

    Article 

    Google Scholar
     

  • Longeard, N. et al. Detailed study of the Milky Way globular cluster Laevens 3. Mon. Not. R. Astron. Soc. 490, 1498–1508 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Cerny, W. et al. DELVE 6: an ancient, ultra-faint star cluster on the outskirts of the Magellanic Clouds. Astrophys. J. Lett. 953, L21 (2023).

    Article 

    Google Scholar
     

  • Longeard, N. et al. The pristine dwarf-galaxy survey – III. Revealing the nature of the Milky Way globular cluster Sagittarius II. Mon. Not. R. Astron. Soc. 503, 2754–2762 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Mutlu-Pakdil, B. et al. A deeper look at the new Milky Way satellites: Sagittarius II, Reticulum II, Phoenix II, and Tucana III. Astrophys. J. 863, 25 (2018).

    Article 

    Google Scholar
     

  • Richstein, H. et al. Deep Hubble Space Telescope photometry of Large Magellanic Cloud and Milky Way ultrafaint dwarfs: a careful look into the magnitude–size relation. Astrophys. J. 967, 72 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Muñoz, R. R. et al. The discovery of an ultra-faint star cluster in the constellation of Ursa Minor. Astrophys. J. Lett. 753, L15 (2012).

    Article 

    Google Scholar
     

  • Luque, E. et al. Deep SOAR follow-up photometry of two Milky Way outer-halo companions discovered with Dark Energy Survey. Mon. Not. R. Astron. Soc. 478, 2006–2018 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Cerny, W. et al. Discovery of an ultra-faint stellar system near the Magellanic Clouds with the DECam Local Volume Exploration Survey. Astrophys. J. 910, 18 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Gatto, M. et al. Deep very large telescope photometry of the faint stellar system in the Large Magellanic Cloud periphery YMCA-1. Astrophys. J. Lett. 929, L21 (2022).

    Article 

    Google Scholar
     

  • Kim, D., Jerjen, H., Milone, A. P., Mackey, D. & Da Costa, G. S. Discovery of a faint outer halo Milky Way star cluster in the southern sky. Astrophys. J. 803, 63 (2015).

    Article 

    Google Scholar
     

  • McConnachie, A. W. & Irwin, M. J. Structural properties of the M31 dwarf spheroidal galaxies. Mon. Not. R. Astron. Soc. 365, 1263–1276 (2006).

    Article 

    Google Scholar
     

  • McConnachie, A. W. The observed properties of dwarf galaxies in and around the Local Group. Astron. J. 144, 4 (2012).

    Article 

    Google Scholar
     

  • Makarova, L. N. et al. A nearby isolated dwarf: star formation and structure of ESO 006-001. Astrophys. J. 943, 139 (2023).

    Article 

    Google Scholar
     

  • Kirby, E. N., Bullock, J. S., Boylan-Kolchin, M., Kaplinghat, M. & Cohen, J. G. The dynamics of isolated Local Group galaxies. Mon. Not. R. Astron. Soc. 439, 1015–1027 (2014).

    Article 

    Google Scholar
     

  • Dalcanton, J. J. et al. The ACS Nearby Galaxy Survey Treasury. Astrophys. J. Suppl. Ser. 183, 67–108 (2009).

    Article 

    Google Scholar
     

  • Koribalski, B. S. et al. The 1000 brightest HIPASS galaxies: H I properties. Astron. J. 128, 16–46 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Newman, M. J. B. et al. An empirical calibration of the tip of the red giant branch distance method in the near infrared. I. HST WFC3/IR F110W and F160W filters. Astrophys. J. 966, 175 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Jones, M. G. et al. Pavo: discovery of a star-forming dwarf galaxy just outside the Local Group. Astrophys. J. Lett. 957, L5 (2023).

    Article 

    Google Scholar
     

  • Karachentsev, I. D. et al. A new galaxy near the Local Group in Draco. Astron. Astrophys. 379, 407–411 (2001).

    Article 

    Google Scholar
     

  • Higgs, C. R. et al. Solo dwarfs II: the stellar structure of isolated Local Group dwarf galaxies. Mon. Not. R. Astron. Soc. 503, 176–199 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Kirby, E. N. et al. Chemistry and kinematics of the late-forming dwarf irregular galaxies Leo A, Aquarius, and Sagittarius DIG. Astrophys. J. 834, 9 (2017).

    Article 

    Google Scholar
     

  • McQuinn, K. B. W. et al. Pegasus W: an ultrafaint dwarf galaxy outside the halo of M31 not quenched by reionization. Astrophys. J. 944, 14 (2023).

    Article 

    Google Scholar
     

  • Bernstein-Cooper, E. Z. et al. ALFALFA discovery of the nearby gas-rich dwarf galaxy Leo P. V. neutral gas dynamics and kinematics. Astron. J. 148, 35 (2014).

    Article 

    Google Scholar
     

  • McQuinn, K. B. W. et al. Leo P: an unquenched very low-mass galaxy. Astrophys. J. 812, 158 (2015).

    Article 

    Google Scholar
     

  • Sand, D. J. et al. Tucana B: a potentially isolated and quenched ultra-faint dwarf galaxy at D ≈ 1.4 Mpc. Astrophys. J. Lett. 935, L17 (2022).

    Article 

    Google Scholar
     

  • Young, L. M., van Zee, L., Lo, K. Y., Dohm-Palmer, R. C. & Beierle, M. E. Star formation and the interstellar medium in four dwarf irregular galaxies. Astrophys. J. 592, 111–128 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Hargis, J. R. et al. Hubble Space Telescope imaging of Antlia B: star formation history and a new tip of the red giant branch distance. Astrophys. J. 888, 31 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Sand, D. J. et al. Antlia B: a faint dwarf galaxy member of the NGC 3109 association. Astrophys. J. Lett. 812, L13 (2015).

    Article 

    Google Scholar
     

  • Zoutendijk, S. L. et al. The MUSE-Faint survey. III. No large dark-matter cores and no significant tidal stripping in ultra-faint dwarf galaxies. Preprint https://arxiv.org/abs/2112.09374 (2021).

  • Tully, R. B. et al. The Extragalactic Distance Database. Astron. J. 138, 323–331 (2009).

    Article 

    Google Scholar
     

  • McQuinn, K. B. W. et al. Discovery and characterization of two ultrafaint dwarfs outside the halo of the Milky Way: Leo M and Leo K. Astrophys. J. 967, 161 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Carlin, J. L. et al. Tidal destruction in a low-mass galaxy environment: the discovery of tidal tails around DDO 44. Astrophys. J. 886, 109 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Battaglia, G., Rejkuba, M., Tolstoy, E., Irwin, M. J. & Beccari, G. A wide-area view of the Phoenix dwarf galaxy from Very Large Telescope/FORS imaging. Mon. Not. R. Astron. Soc. 424, 1113–1131 (2012).

    Article 

    Google Scholar
     

  • Kacharov, N. et al. Prolate rotation and metallicity gradient in the transforming dwarf galaxy Phoenix. Mon. Not. R. Astron. Soc. 466, 2006–2023 (2017).

    Article 
    CAS 

    Google Scholar
     

  • van de Rydt, F., Demers, S. & Kunkel, W. E. Phoenix: an intermediate dwarf galaxy in the Local Group. Astron. J. 102, 130–136 (1991).

    Article 

    Google Scholar
     

  • Bouchard, A., Jerjen, H., Da Costa, G. S. & Ott, J. Detection of neutral hydrogen in early-type dwarf galaxies of the Sculptor Group. Astron. J. 130, 2058–2064 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Savino, A. et al. The Hubble Space Telescope Survey of M31 Satellite Galaxies. I. RR Lyrae-based distances and refined 3D geometric structure. Astrophys. J. 938, 101 (2022).

    Article 

    Google Scholar
     

  • McNanna, M. et al. A search for faint resolved galaxies beyond the Milky Way in DES Year 6: a new faint, diffuse dwarf satellite of NGC 55. Astrophys. J. 961, 126 (2024).

    Article 

    Google Scholar
     

  • Simon, J. D. & Geha, M. The kinematics of the ultra-faint Milky Way satellites: solving the missing satellite problem. Astrophys. J. 670, 313–331 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Leaman, R. et al. The comparative chemical evolution of an isolated dwarf galaxy: a VLT and Keck spectroscopic survey of WLM. Astrophys. J. 767, 131 (2013).

    Article 

    Google Scholar
     

  • Taibi, S. et al. The Tucana dwarf spheroidal galaxy: not such a massive failure after all. Astron. Astrophys. 635, A152 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Barnes, D. G. & de Blok, W. J. G. On the neutral gas content and environment of NGC 3109 and the Antlia dwarf galaxy. Astron. J. 122, 825–829 (2001).

    Article 

    Google Scholar
     

  • Hoffman, G. L. et al. Arecibo H i mapping of a large sample of dwarf irregular galaxies. Astrophys. J. Suppl. Ser. 105, 269–298 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Karachentsev, I. D., Makarova, L. N., Tully, R. B., Wu, P.-F. & Kniazev, A. Y. KK258, a new transition dwarf galaxy neighbouring the Local Group. Mon. Not. R. Astron. Soc. 443, 1281–1290 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Karachentsev, I. D., Makarova, L. N., Makarov, D. I., Tully, R. B. & Rizzi, L. A new isolated dSph galaxy near the Local Group. Mon. Not. R. Astron. Soc. 447, L85–L89 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Karachentsev, I. D., Kniazev, A. Y. & Sharina, M. E. The isolated dSph galaxy KKs3 in the local Hubble flow. Astron. Nachr. 336, 707–714 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Baumgardt, H. & Hilker, M. A catalogue of masses, structural parameters, and velocity dispersion profiles of 112 Milky Way globular clusters. Mon. Not. R. Astron. Soc. 478, 1520–1557 (2018).

    Article 

    Google Scholar
     

  • Baumgardt, H., Sollima, A. & Hilker, M. Absolute V-band magnitudes and mass-to-light ratios of Galactic globular clusters. Publ. Astron. Soc. Aust. 37, e046 (2020).

    Article 

    Google Scholar
     

  • Baumgardt, H. & Vasiliev, E. Accurate distances to Galactic globular clusters through a combination of Gaia EDR3, HST, and literature data. Mon. Not. R. Astron. Soc. 505, 5957–5977 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Kunder, A. et al. The Milky Way Bulge extra-tidal star survey: BH 261 (AL 3). Astron. J. 167, 21 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Simpson, J. D. The most metal-poor Galactic globular cluster: the first spectroscopic observations of ESO280-SC06. Mon. Not. R. Astron. Soc. 477, 4565–4576 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Kobulnicky, H. A. et al. Discovery of a new low-latitude Milky Way globular cluster using GLIMPSE. Astron. J. 129, 239–250 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Harris, W. E. A new catalog of globular clusters in the Milky Way. Preprint at https://arxiv.org/abs/1012.3224 (2010).

  • Kunder, A., Crabb, R. E., Debattista, V. P., Koch-Hansen, A. J. & Huhmann, B. M. Spectroscopic observations of obscured populations in the inner galaxy: 2MASS-GC02, Terzan 4, and the 200 km s−1 stellar peak. Astron. J. 162, 86 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Pallanca, C. et al. Internal kinematics and structure of the bulge globular cluster NGC 6569. Astrophys. J. 950, 138 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Souza, S. O. et al. Photo-chemo-dynamical analysis and the origin of the bulge globular cluster Palomar 6. Astron. Astrophys. 656, A78 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Kurtev, R., Ivanov, V. D., Borissova, J. & Ortolani, S. Obscured clusters. II. GLIMPSE-C02 – a new metal rich globular cluster in the Milky Way. Astron. Astrophys. 489, 583–587 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Strader, J. & Kobulnicky, H. A. A probable new globular cluster in the Galactic disk. Astron. J. 136, 2102–2106 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Carraro, G., Zinn, R. & Bidin, C. M. Whiting 1: the youngest globular cluster associated with the Sagittarius dwarf spheroidal galaxy. Astron. Astrophys. 466, 181–189 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Taylor, E. et al. EDGE: initial condition files. Zenodo https://doi.org/10.5281/zenodo.16536387 (2025).

  • RELATED ARTICLES

    Most Popular

    Recent Comments