Monday, November 25, 2024
No menu items!
HomeNatureThe cool brown dwarf Gliese 229 B is a close binary

The cool brown dwarf Gliese 229 B is a close binary

  • Brandt, M. et al. Improved dynamical masses for six brown dwarf companions using Hipparcos and Gaia EDR3. Astron. J. 162, 301 (2021).

    ADS 

    Google Scholar
     

  • Cheetham, A. et al. Direct imaging of an ultracool substellar companion to the exoplanet host star HD 4113 A. Astron. Astrophys. 680, A64 (2018).


    Google Scholar
     

  • Li, Y. et al. Surveying nearby brown dwarfs with HGCA: direct imaging discovery of a faint, high-mass brown dwarf orbiting HD 176535 A. Mon. Not. R. Astron. Soc. 522, 5622–5637 (2023).

    ADS 

    Google Scholar
     

  • Howe, A. R., Mandell, A. M. & McElwain, M. W. Investigating possible binarity for GJ 229B. Astrophys. J. Lett. 951, L25 (2023).

    ADS 

    Google Scholar
     

  • Nakajima, T. et al. Discovery of a cool brown dwarf. Nature 378, 463–465 (1995).

    ADS 
    CAS 

    Google Scholar
     

  • Oppenheimer, B. R. et al. Infrared spectrum of the cool brown dwarf Gl 229B. Science 270, 1478–1479 (1995).

    ADS 
    CAS 

    Google Scholar
     

  • Filippazzo, J. C. et al. Fundamental parameters and spectral energy distributions of young and field age objects with masses spanning the stellar to planetary regime. Astrophys. J. 810, 158 (2015).

    ADS 

    Google Scholar
     

  • Saumon, D. & Marley, M. S. The evolution of L and T dwarfs in color-magnitude diagrams. Astrophys. J. 689, 1327 (2008).

    ADS 

    Google Scholar
     

  • Phillips, M. W. et al. A new set of atmosphere and evolution models for cool T–Y brown dwarfs and giant exoplanets. Astron. Astrophys. 637, A38 (2020).

    CAS 

    Google Scholar
     

  • Oppenheimer, B. R., Kulkarni, S. R., & Stauffer, J. R. in Protostars and Planets IV (eds Mannings, V. Boss, A. P. & Russell, S. S.) 1313 (Univ. Arizona Press, 2000).

  • Morley, C. V. et al. The Sonora substellar atmosphere models. III. Diamondback: atmospheric properties, spectra, and evolution for warm cloudy substellar objects. Preprint at https://arxiv.org/abs/2402.00758 (2024).

  • Burgasser, A. J., Geballe, T. R., Leggett, S. K., Kirkpatrick, J. D. & Golimowski, D. A. A unified near-infrared spectral classification scheme for T dwarfs. Astrophys. J. 637, 1067 (2006).

    ADS 
    CAS 

    Google Scholar
     

  • Brandt, T. D. et al. A dynamical mass of 70 ± 5 MJup for Gliese 229B, the first T dwarf. Astron. J. 160, 196 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Gaia Collaboration. Gaia Data Release 3. Summary of the content and survey properties. Astron. Astrophys. 674, A1 (2023).


    Google Scholar
     

  • Burgasser, A. J. et al. in Protostars and Planets V (eds Reipurth, B. Jewitt, D. & Keil, K.) 427 (Univ. Arizona Press, 2007).

  • Fontanive, C., Biller, B., Bonavita, M. & Allers, K. Constraining the multiplicity statistics of the coolest brown dwarfs: binary fraction continues to decrease with spectral type. Mon. Not. R. Astron. Soc. 479, 2702–2727 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • GRAVITY+ Collaboration et al. First light for GRAVITY Wide. Large separation fringe tracking for the Very Large Telescope Interferometer. Astron. Astrophys. 665, A75 (2022).


    Google Scholar
     

  • Dorn, R. J. et al. CRIRES+ on sky at the ESO Very Large Telescope. Observing the Universe at infrared wavelengths and high spectral resolution. Astron. Astrophys. 671, A24 (2023).

    CAS 

    Google Scholar
     

  • Gallenne, A. et al. Robust high-contrast companion detection from interferometric observations. The CANDID algorithm and an application to six binary Cepheids. Astron. Astrophys. 579, A68 (2015).


    Google Scholar
     

  • Mukherjee, S. et al. The Sonora substellar atmosphere models. IV. Elf Owl: atmospheric mixing and chemical disequilibrium with varying metallicity and C/O ratios. Astrophys. J. 963, 73 (2024).

    ADS 

    Google Scholar
     

  • Calamari, E. et al. An atmospheric retrieval of the brown dwarf Gliese 229B. Astrophys. J. 940, 164 (2022).

    ADS 

    Google Scholar
     

  • Mérand, A. Flexible spectro-interferometric modelling of OIFITS data with PMOIRED. Proc. SPIE 12183, 121831N (2022).


    Google Scholar
     

  • Thompson, W. et al. Octofitter: fast, flexible, and accurate orbit modeling to detect exoplanets. Astron. J. 166, 164 (2023).

    ADS 

    Google Scholar
     

  • Dupuy, T. J. & Liu, M. C. Individual dynamical masses of ultracool dwarfs. Astrophys. J. Suppl. Ser. 231, 15 (2017).

    ADS 

    Google Scholar
     

  • Bowler, B. P. et al. Rotation periods, inclinations, and obliquities of cool stars hosting directly imaged substellar companions: spin–orbit misalignments are common. Astron. J. 165, 164 (2023).

    ADS 

    Google Scholar
     

  • Chabrier, G., Baraffe, I., Phillips, M. & Debras, F. Impact of a new H/He equation of state on the evolution of massive brown dwarfs. New determination of the hydrogen burning limit. Astron. Astrophys. 671, A119 (2023).

    ADS 
    CAS 

    Google Scholar
     

  • Hsu, C.-C., Burgasser, A. J. & Theissen, C. A. Discovery of the exceptionally short period ultracool dwarf binary LP 413-53AB. Astrophys. J. Lett. 945, L6 (2023).

    ADS 

    Google Scholar
     

  • Lodieu, N. et al. An eclipsing double-line spectroscopic binary at the stellar/substellar boundary in the Upper Scorpius OB association. Astron. Astrophys. 584, A128 (2015).


    Google Scholar
     

  • Stassun, K. G., Mathieu, R. D. & Valenti, J. A. Discovery of two young brown dwarfs in an eclipsing binary system. Nature 440, 311–314 (2006).

    ADS 
    CAS 

    Google Scholar
     

  • Triaud, A. H. M. J. et al. An eclipsing substellar binary in a young triple system discovered by SPECULOOS. Nat. Astron. 4, 650–657 (2020).

    ADS 

    Google Scholar
     

  • Low, C. & Lynden-Bell, D. The minimum Jeans mass or when fragmentation must stop. Mon. Not. R. Astron. Soc. 176, 367–390 (1976).

    ADS 

    Google Scholar
     

  • Burgasser, A. J. et al. Discovery of a very low mass triple with late-M and T dwarf components: LP 704-48/SDSS J0006-0852AB. Astrophys. J. 757, 110 (2012).

    ADS 

    Google Scholar
     

  • Stamatellos, D. & Whitworth, A. P. The properties of brown dwarfs and low-mass hydrogen-burning stars formed by disc fragmentation. Mon. Not. R. Astron. Soc. 392, 413–427 (2009).

    ADS 
    CAS 

    Google Scholar
     

  • Lazzoni, C., Rice, K., Zurlo, A., Hinkley, S. & Desidera, S. Binary planet formation through tides. Mon. Not. R. Astron. Soc. 527, 3837–3846 (2024).

    ADS 

    Google Scholar
     

  • Best, W. M. J., Liu, M. C., Dupuy, T. J. & Magnier, E. A. The young L dwarf 2MASS J11193254–1137466 is a planetary-mass binary. Astrophys. J. Lett. 843, L4 (2017).

    ADS 

    Google Scholar
     

  • Theissen, C. A. et al. WISE J135501.90-825838.9 is a nearby, young, extremely low-mass substellar binary. Res. Notes AAS 4, 67 (2020).

    ADS 

    Google Scholar
     

  • Bowler, B. P. & Hillenbrand, L. A. Near-infrared spectroscopy of 2M0441+2301 AabBab: a quadruple system spanning the stellar to planetary mass regimes. Astrophys. J. Lett. 811, L30 (2015).

    ADS 

    Google Scholar
     

  • Chauvin, G. et al. A giant planet candidate near a young brown dwarf. Direct VLT/NACO observations using IR wavefront sensing. Astron. Astrophys. 425, L29 (2004).

    ADS 
    CAS 

    Google Scholar
     

  • Calissendorff, P. et al. JWST/NIRCam discovery of the first Y+Y brown dwarf binary: WISE J033605.05-014350.4. Astrophys. J. Lett. 947, L30 (2023).

    ADS 

    Google Scholar
     

  • GRAVITY Collaboration et al. First light for GRAVITY: phase referencing optical interferometry for the Very Large Telescope Interferometer. Astron. Astrophys. 602, A94 (2017).


    Google Scholar
     

  • Eisenhauer, F. GRAVITY+: towards faint science. The Very Large Telescope in 2030 (VLT2030). Zenodo https://doi.org/10.5281/zenodo.3356274 (2019).

  • Lacour, S. et al. The GRAVITY fringe tracker. Astron. Astrophys. 624, A99 (2019).


    Google Scholar
     

  • Nowak, M. et al. Upgrading the GRAVITY fringe tracker for GRAVITY+. Tracking the white-light fringe in the non-observable optical path length state-space. Astron. Astrophys. 684, A184 (2024).


    Google Scholar
     

  • Lapeyrere, V. et al. GRAVITY data reduction software. Proc. SPIE 9146, 91462D (2014).


    Google Scholar
     

  • Lacour, S., Carrión-González, Ó., & Nowak, M. Exoplanets in reflected starlight with dual-field interferometry: a case for shorter wavelengths and a fifth Unit Telescope at VLTI/Paranal. Preprint at https://arxiv.org/abs/2406.07030 (2024).

  • Dorn, R. J. et al. CRIRES+: exploring the cold universe at high spectral resolution. The Messenger 156, 7–11 (2014).

    ADS 

    Google Scholar
     

  • Zhang, Y. excalibuhr. GitHub https://github.com/yapenzhang/excalibuhr (2024)

  • Horne, K. An optimal extraction algorithm for CCD spectroscopy. Publ. Astron. Soc. Pac. 98, 609 (1986).

    ADS 
    CAS 

    Google Scholar
     

  • Noll, S. et al. An atmospheric radiation model for Cerro Paranal. I. The optical spectral range. Astron. Astrophys. 543, A92 (2012).


    Google Scholar
     

  • Jones, A., Noll, S., Kausch, W., Szyszka, C. & Kimeswenger, S. An advanced scattered moonlight model for Cerro Paranal. Astron. Astrophys. 560, A91 (2013).

    ADS 

    Google Scholar
     

  • Smette, A. et al. Molecfit: a general tool for telluric absorption correction. Astron. Astrophys. 576, A77 (2015).


    Google Scholar
     

  • Geballe, T. R., Kulkarni, S. R., Woodward, C. E. & Sloan, G. C. The near-infrared spectrum of the brown dwarf Gliese 229B. Astrophys. J. Lett. 467, L101 (1996).

    ADS 
    CAS 

    Google Scholar
     

  • Hargreaves, R. J. et al. An accurate, extensive, and practical line list of methane for the HITEMP database. Astrophys. J. Suppl. Ser. 247, 55 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Tannock, M. E. et al. A 1.46–2.48 μm spectroscopic atlas of a T6 dwarf (1060 K) atmosphere with IGRINS: first detections of H2S and H2, and verification of H2O, CH4, and NH3 line lists. Mon. Not. R. Astron. Soc. 514, 3160–3178 (2022).

    ADS 
    CAS 

    Google Scholar
     

  • Polyansky, O. L. et al. ExoMol molecular line lists XXX: a complete high-accuracy line list for water. Mon. Not. R. Astron. Soc. 480, 2597–2608 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • Mollière, P. et al. petitRADTRANS. A Python radiative transfer package for exoplanet characterization and retrieval. Astron. Astrophys. 627, A67 (2019).


    Google Scholar
     

  • Ruffio, J.-B. et al. Detecting exomoons from radial velocity measurements of self-luminous planets: application to observations of HR 7672 B and future prospects. Astron. J. 165, 113 (2023).

    ADS 

    Google Scholar
     

  • Carvalho, A. & Johns-Krull, C. M. A simple code for rotational broadening of broad wavelength range high-dispersion spectra. Res. Notes AAS 7, 91 (2023).

    ADS 

    Google Scholar
     

  • Speagle, J. S. DYNESTY: a dynamic nested sampling package for estimating Bayesian posteriors and evidences. Mon. Not. R. Astron. Soc. 493, 3132–3158 (2020).

    ADS 

    Google Scholar
     

  • Astropy Collaboration et al. The Astropy Project: sustaining and growing a community-oriented open-source project and the latest major release (v5.0) of the core package. Astrophys. J. 935, 167 (2022).

    ADS 

    Google Scholar
     

  • Fouqué, P. et al. SPIRou Input Catalogue: global properties of 440 M dwarfs observed with ESPaDOnS at CFHT. Mon. Not. R. Astron. Soc. 475, 1960–1986 (2018).

    ADS 

    Google Scholar
     

  • Neves, V. et al. Metallicity of M dwarfs. III. Planet-metallicity and planet-stellar mass correlations of the HARPS GTO M dwarf sample. Astron. Astrophys. 551, A36 (2013).


    Google Scholar
     

  • Kuznetsov, M. K., del Burgo, C., Pavlenko, Y. V. & Frith, J. Characterization of a sample of southern M dwarfs using HARPS and X-shooter spectra. Astrophys. J. 878, 134 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • Nakajima, T., Tsuji, T. & Takeda, Y. Physical properties of Gliese 229B based on newly determined carbon and oxygen abundances of Gliese 229A. Astron. J. 150, 53 (2015).

    ADS 

    Google Scholar
     

  • Husser, T.-O. et al. A new extensive library of PHOENIX stellar atmospheres and synthetic spectra. Astron. Astrophys. 553, A6 (2013).


    Google Scholar
     

  • Leggett, S. K. et al. Infrared photometry of late-M, L, and T dwarfs. Astrophys. J. 564, 452 (2002).

    ADS 
    CAS 

    Google Scholar
     

  • Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: the MCMC hammer. Publ. Astron. Soc. Pac. 125, 306 (2013).

    ADS 

    Google Scholar
     

  • Sanghi, A. et al. The Hawaii Infrared Parallax Program. VI. The fundamental properties of 1000+ ultracool dwarfs and planetary-mass objects using optical to mid-infrared spectral energy distributions and comparison to BT-Settl and ATMO 2020 model atmospheres. Astrophys. J. 959, 63 (2023).

    ADS 
    CAS 

    Google Scholar
     

  • Gallenne, A. et al. The Araucaria project: high-precision orbital parallaxes and masses of binary stars. I. VLTI/GRAVITY observations of ten double-lined spectroscopic binaries. Astron. Astrophys. 672, A119 (2023).

    CAS 

    Google Scholar
     

  • Lachaume, R. et al. Towards reliable uncertainties in IR interferometry: the bootstrap for correlated statistical and systematic errors. Mon. Not. R. Astron. Soc. 484, 2656–2673 (2019).

    ADS 

    Google Scholar
     

  • Kammerer, J., Mérand, A., Ireland, M. J. & Lacour, S. Increasing the achievable contrast of infrared interferometry with an error correlation model. Astron. Astrophys. 644, A110 (2020).

    ADS 

    Google Scholar
     

  • Syed, S., Bouchard-Côté, A., Deligiannidis, G. & Doucet, A. Non-reversible parallel tempering: a scalable highly parallel MCMC scheme. J. R. Stat. Soc. B Stat. Methodol. 84, 321–350 (2022).

    MathSciNet 

    Google Scholar
     

  • Surjanovic, N. et al. Pigeons.jl: distributed sampling from intractable distributions. Preprint at https://arxiv.org/abs/2308.09769 (2023).

  • Biron-Lattes, M., Surjanovic, N., Syed, S., Campbell, T. & Bouchard-Cote, A. in Proc. 27th International Conference on Artificial Intelligence and Statistics 4600–4608 (MLR Press, 2024).

  • Surjanovic, N., Syed, S., Bouchard-Côté, A. & Campbell, T. Parallel tempering with a variational reference. In Advances in Neural Information Processing Systems NeurIPS 35 565–577 (Curran Associates, Inc., 2022).

  • Blackburn, L. et al. Closure statistics in interferometric data. Astrophys. J. 894, 31 (2020).

    ADS 

    Google Scholar
     

  • Peale, S. J. in Planetary Satellites (ed. Burns, J. A.) 87–111 (Univ. Arizona Press, 1977).

  • Naoz, S. The eccentric Kozai-Lidov effect and its applications. Annu. Rev. Astron. Astrophys. 54, 441–489 (2016).

    ADS 
    CAS 

    Google Scholar
     

  • Batygin, K., Bodenheimer, P. & Laughlin, G. Determination of the interior structure of transiting planets in multiple-planet systems. Astrophys. J. Lett. 704, L49 (2009).

    ADS 

    Google Scholar
     

  • Efroimsky, M. & Makarov, V. V. Tidal quality of the hot Jupiter WASP-12b. Universe 8, 211 (2022).

    ADS 

    Google Scholar
     

  • Xuan, J., Thompson, W., Lacour, S., Blakely, D. & Mérand, A. GRAVITY and CRIRES+ data for Gliese 229Bab Zenodo https://doi.org/10.5281/zenodo.13851639 (2024).

  • Dupuy, T. J. & Liu, M. C. The Hawaii Infrared Parallax Program. I. Ultracool binaries and the L/T transition. Astrophys. J. Suppl. Ser. 201, 19 (2012).

    ADS 

    Google Scholar
     

  • Dupuy, T. J. & Kraus, A. L. Distances, luminosities, and temperatures of the coldest known substellar objects. Science 341, 1492–1495 (2013).

    ADS 
    CAS 

    Google Scholar
     

  • Deacon, N. R. et al. Wide cool and ultracool companions to nearby stars from Pan-STARRS 1. Astrophys. J. 792, 119 (2014).

    ADS 

    Google Scholar
     

  • Liu, M. C., Dupuy, T. J. & Allers, K. N. The Hawaii Infrared Parallax Program. II. Young ultracool field dwarfs. Astrophys. J. 833, 96 (2016).

    ADS 

    Google Scholar
     

  • Best, W. M. J. et al. Photometry and proper motions of M, L, and T dwarfs from the Pan-STARRS1 3π survey. Astrophys. J. Suppl. Ser. 234, 1 (2018).

    ADS 

    Google Scholar
     

  • Best, W. M. J., Liu, M. C., Magnier, E. A. & Dupuy, T. J. A volume-limited sample of ultracool dwarfs. I. Construction, space density, and a gap in the L/T transition. Astron. J. 161, 42 (2021).

    ADS 

    Google Scholar
     

  • Schneider, A. C. et al. Astrometry and photometry for ≈1000 L, T, and Y dwarfs from the UKIRT Hemisphere Survey. Astron. J. 166, 103 (2023).

    ADS 

    Google Scholar
     

  • Allard, F., Hauschildt, P. H., Alexander, D. R., Tamanai, A. & Schweitzer, A. The limiting effects of dust in brown dwarf model atmospheres. Astrophys. J. 556, 357 (2001).

    ADS 
    CAS 

    Google Scholar
     

  • Golimowski, D. A. et al. The Solar neighborhood. IX. Hubble Space Telescope detections of companions to five M and L dwarfs within 10 parsecs of the Sun. Astron. J. 128, 1733 (2004).

    ADS 

    Google Scholar
     

  • Burgasser, A. J., Kirkpatrick, J. D. & Lowrance, P. J. Multiplicity among widely separated brown dwarf companions to nearby stars: Gliese 337CD. Astrophys. J. 129, 2849 (2005).


    Google Scholar
     

  • Dupuy, T. J., Liu, M. C. & Ireland, M. J. New evidence for a substellar luminosity problem: dynamical mass for the brown dwarf binary Gl 417BC. Astrophys. J. 790, 133 (2014).

    ADS 

    Google Scholar
     

  • Dupuy, T. J., Liu, M. C. & Ireland, M. J. Dynamical mass of the substellar benchmark binary HD 130948BC. Astrophys. J. 692, 729 (2009).

    ADS 
    CAS 

    Google Scholar
     

  • Nielsen, E. L. et al. The Gemini NICI Planet-Finding Campaign: the frequency of giant planets around young B and A stars. Astrophys. J. 776, 4 (2013).

    ADS 

    Google Scholar
     

  • Chen, M. et al. Precise dynamical masses of ɛ Indi Ba and Bb: evidence of slowed cooling at the L/T transition. Astron. J. 163, 288 (2022).

    ADS 
    CAS 

    Google Scholar
     

  • Radigan, J. et al. Discovery of a visual T-dwarf triple system and binarity at the L/T transition. Astrophys. J. 778, 36 (2013).

    ADS 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments