Tuesday, January 28, 2025
No menu items!
HomeNatureTerrestrial photosynthesis inferred from plant carbonyl sulfide uptake

Terrestrial photosynthesis inferred from plant carbonyl sulfide uptake

  • Anav, A. et al. Spatiotemporal patterns of terrestrial gross primary production: a review. Rev. Geophys. 53, 785–818 (2015).

    ADS 

    Google Scholar
     

  • Trabalka, J. R. Atmospheric Carbon Dioxide and the Global Carbon Cycle (US Department of Energy, 1986).

  • Bolin, B. & Fung, I. The Carbon Cycle Revisited Vol. 3 (University Corp. for Atmospheric Research, 1992).

  • Beer, C. et al. Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science 329, 834–838 (2010).

    ADS 
    CAS 

    Google Scholar
     

  • Jung, M. et al. Scaling carbon fluxes from eddy covariance sites to globe: synthesis and evaluation of the FLUXCOM approach. Biogeosciences 17, 1343–1365 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Ryu, Y., Berry, J. A. & Baldocchi, D. D. What is global photosynthesis? History, uncertainties and opportunities. Remote Sens. Environ. 223, 95–114 (2019).

    ADS 

    Google Scholar
     

  • Welp, L. R. et al. Interannual variability in the oxygen isotopes of atmospheric CO2 driven by El Niño. Nature 477, 579–582 (2011).

    ADS 
    CAS 

    Google Scholar
     

  • Jian, J. et al. Historically inconsistent productivity and respiration fluxes in the global terrestrial carbon cycle. Nat. Commun. 13, 1733 (2022).

    ADS 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Friedlingstein, P. et al. Climate–carbon cycle feedback analysis: results from the C4MIP model intercomparison. J. Clim. 19, 3337–3353 (2006).

    ADS 

    Google Scholar
     

  • Campbell, J. E. et al. Large historical growth in global terrestrial gross primary production. Nature 544, 84–87 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • Zhang-Zheng, H. et al. Contrasting carbon cycle along tropical forest aridity gradients in West Africa and Amazonia. Nat. Commun. 15, 3158 (2024).

    ADS 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Canadell, J. G. et al. In Climate Change 2021: The Physical Science Basis (ed. Brovkin, V.) Ch. 5 (Cambridge Univ. Press, 2021).

  • Chen, M. et al. Regional contribution to variability and trends of global gross primary productivity. Environ. Res. Lett. 12, 105005 (2017).

    ADS 

    Google Scholar
     

  • Hilton, T. W. et al. Peak growing season gross uptake of carbon in North America is largest in the Midwest USA. Nat. Clim. Change 7, 450–454 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • Friedlingstein, P. et al. Global carbon budget 2023. Earth Syst. Sci. Data 15, 5301–5369 (2023).


    Google Scholar
     

  • Berry, J. et al. A coupled model of the global cycles of carbonyl sulfide and CO2: a possible new window on the carbon cycle. J. Geophys. Res. Biogeosci. 118, 842–852 (2013).

    CAS 

    Google Scholar
     

  • Whelan, M. E. et al. Reviews and syntheses: carbonyl sulfide as a multi-scale tracer for carbon and water cycles. Biogeosciences 15, 3625–3657 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • Wehr, R. et al. Dynamics of canopy stomatal conductance, transpiration, and evaporation in a temperate deciduous forest, validated by carbonyl sulfide uptake. Biogeosciences 14, 389–401 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • Medlyn, B. E. et al. Reconciling the optimal and empirical approaches to modelling stomatal conductance. Glob. Chang. Biol. 17, 2134–2144 (2011).

    ADS 

    Google Scholar
     

  • Knauer, J. et al. Mesophyll conductance in land surface models: effects on photosynthesis and transpiration. Plant J. 101, 858–873 (2020).

    CAS 

    Google Scholar
     

  • Sun, Y. et al. Asymmetrical effects of mesophyll conductance on fundamental photosynthetic parameters and their relationships estimated from leaf gas exchange measurements. Plant Cell Environ. 37, 978–994 (2014).


    Google Scholar
     

  • Jähne, B., Heinz, G. & Dietrich, W. Measurement of the diffusion coefficients of sparingly soluble gases in water. J. Geophys. Res. 92, 10767–10776 (1987).

    ADS 

    Google Scholar
     

  • Ulshöfer, V. S., Flock, O. R., Uher, G. & Andreae, M. O. Photochemical production and air-sea exchange of carbonyl sulfide in the eastern Mediterranean Sea. Mar. Chem. 53, 25–39 (1996).


    Google Scholar
     

  • Sun, Y. et al. Impact of mesophyll diffusion on estimated global land CO2 fertilization. Proc. Natl Acad. Sci. USA 111, 15774–15779 (2014).

    ADS 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Kooijmans, L. M. J. et al. Evaluation of carbonyl sulfide biosphere exchange in the Simple Biosphere Model (SiB4). Biogeosciences 18, 6547–6565 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • Sun, W., Maseyk, K., Lett, C. & Seibt, U. Stomatal control of leaf fluxes of carbonyl sulfide and CO2 in a Typha freshwater marsh. Biogeosciences 15, 3277–3291 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • Maseyk, K. et al. Sources and sinks of carbonyl sulfide in an agricultural field in the Southern Great Plains. Proc. Natl Acad. Sci. USA 111, 9064–9069 (2014).

    ADS 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Kooijmans, L. M. J. et al. Canopy uptake dominates nighttime carbonyl sulfide fluxes in a boreal forest. Atmos. Chem. Phys. 17, 11453–11465 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • Stimler, K., Berry, J. A., Montzka, S. A. & Yakir, D. Association between carbonyl sulfide uptake and 18D during gas exchange in C3 and C4 leaves. Plant Physiol. 157, 509–517 (2011).

    CAS 
    PubMed Central 

    Google Scholar
     

  • Terashima, I., Hanba, Y. T., Tazoe, Y., Vyas, P. & Yano, S. Irradiance and phenotype: comparative eco-development of sun and shade leaves in relation to photosynthetic CO2 diffusion. J. Exp. Bot. 57, 343–354 (2006).

    CAS 

    Google Scholar
     

  • Niinemets, U., Díaz-Espejo, A., Flexas, J., Galmés, J. & Warren, C. R. Role of mesophyll diffusion conductance in constraining potential photosynthetic productivity in the field. J. Exp. Bot. 60, 2249–2270 (2009).

    CAS 

    Google Scholar
     

  • Niinemets, U., Wright, I. J. & Evans, J. R. Leaf mesophyll diffusion conductance in 35 Australian sclerophylls covering a broad range of foliage structural and physiological variation. J. Exp. Bot. 60, 2433–2449 (2009).

    CAS 

    Google Scholar
     

  • Bernacchi, C. J., Portis, A. R., Nakano, H., von Caemmerer, S. & Long, S. P. Temperature response of mesophyll conductance. Implications for the determination of Rubisco enzyme kinetics and for limitations to photosynthesis in vivo. Plant Physiol. 130, 1992–1998 (2002).

    CAS 
    PubMed Central 

    Google Scholar
     

  • Cano, F. J., López, R. & Warren, C. R. Implications of the mesophyll conductance to CO2 for photosynthesis and water-use efficiency during long-term water stress and recovery in two contrasting Eucalyptus species. Plant Cell Environ. 37, 2470–2490 (2014).

    CAS 

    Google Scholar
     

  • Dillaway, D. N. & Kruger, E. L. Thermal acclimation of photosynthesis: a comparison of boreal and temperate tree species along a latitudinal transect. Plant Cell Environ. 33, 888–899 (2010).

    CAS 

    Google Scholar
     

  • Campbell, J. E. et al. Photosynthetic control of atmospheric carbonyl sulfide during the growing season. Science 322, 1085–1088 (2008).

    ADS 
    CAS 

    Google Scholar
     

  • Stimler, K., Montzka, S. A., Berry, J. A., Rudich, Y. & Yakir, D. Relationships between carbonyl sulfide (COS) and CO2 during leaf gas exchange. New Phytol. 186, 869–878 (2010).

    CAS 

    Google Scholar
     

  • Kooijmans, L. M. J. et al. Influences of light and humidity on carbonyl sulfide-based estimates of photosynthesis. Proc. Natl Acad. Sci. USA 116, 2470–2475 (2019).

    ADS 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Stimler, K., Berry, J. A. & Yakir, D. Effects of carbonyl sulfide and carbonic anhydrase on stomatal conductance. Plant Physiol. 158, 524–530 (2012).

    CAS 

    Google Scholar
     

  • Jung, M. et al. Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations. J. Geophys. Res. 116, G00J07 (2011).

  • Joiner, J. et al. Estimation of terrestrial global gross primary production (GPP) with satellite data-driven models and eddy covariance flux data. Remote Sens. 10, 1346 (2018).

    ADS 

    Google Scholar
     

  • Li, X. & Xiao, J. Mapping photosynthesis solely from solar-induced chlorophyll fluorescence: a global, fine-resolution dataset of gross primary production derived from OCO-2. Remote Sens. 11, 2563 (2019).

    ADS 

    Google Scholar
     

  • Chen, J. M. et al. Effects of foliage clumping on the estimation of global terrestrial gross primary productivity. Glob. Biogeochem. Cycles 26, GB1019 (2012).

  • Jiang, C. & Ryu, Y. Multi-scale evaluation of global gross primary productivity and evapotranspiration products derived from Breathing Earth System Simulator (BESS). Remote Sens. Environ. 186, 528–547 (2016).

    ADS 

    Google Scholar
     

  • Running, S. W. et al. A continuous satellite-derived measure of global terrestrial primary production. Bioscience 54, 547–560 (2004).


    Google Scholar
     

  • Li, X. & Xiao, J. A global, 0.05-degree product of solar-induced chlorophyll fluorescence derived from OCO-2, MODIS, and reanalysis data. Remote Sens. 11, 517 (2019).

    ADS 

    Google Scholar
     

  • Malhi, Y. et al. The Global Ecosystems Monitoring network: monitoring ecosystem productivity and carbon cycling across the tropics. Biol. Conserv. 253, 108889 (2021).


    Google Scholar
     

  • Restrepo-Coupe, N. et al. Do dynamic global vegetation models capture the seasonality of carbon fluxes in the Amazon basin? A data-model intercomparison. Glob. Change Biol. 23, 191–208 (2017).

    ADS 

    Google Scholar
     

  • Worden, J. et al. Satellite observations of the tropical terrestrial carbon balance and interactions with the water cycle during the 21st century. Rev. Geophys. 59, e2020RG000711 (2021).

  • Kuai, L. et al. Quantifying northern high latitude gross primary productivity (GPP) using carbonyl sulfide (OCS). Glob. Biogeochem. Cycles 36, e2021GB007216 (2022).

    ADS 
    CAS 

    Google Scholar
     

  • Commane, R. et al. Seasonal fluxes of carbonyl sulfide in a midlatitude forest. Proc. Natl Acad. Sci. USA 112, 14162–14167 (2015).

    ADS 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Ma, J. et al. Inverse modelling of carbonyl sulfide: implementation, evaluation and implications for the global budget. Atmos. Chem. Phys. 21, 3507–3529 (2021).

  • Badger, M. R. & Price, G. D. The role of carbonic anhydrase in photosynthesis. Annu. Rev. Plant Biol. 45, 369–392 (1994).

    CAS 

    Google Scholar
     

  • Evans, J. R., Caemmerer, S. V., Setchell, B. A. & Hudson, G. S. The relationship between CO2 transfer conductance and leaf anatomy in transgenic tobacco with a reduced content of Rubisco. Funct. Plant Biol. 21, 475–495 (1994).

    CAS 

    Google Scholar
     

  • Ogée, J. et al. A new mechanistic framework to predict OCS fluxes from soils. Biogeosciences 13, 2221–2240 (2016).

    ADS 

    Google Scholar
     

  • Meredith, L. K. et al. Coupled biological and abiotic mechanisms driving carbonyl sulfide production in soils. Soil Systems 2, 37 (2018).

    CAS 

    Google Scholar
     

  • Meredith, L. K. et al. Soil exchange rates of COS and CO18O differ with the diversity of microbial communities and their carbonic anhydrase enzymes. ISME J. 13, 290–300 (2019).

    CAS 

    Google Scholar
     

  • Kaisermann, A., Jones, S. P., Wohl, S., Ogée, J. & Wingate, L. Nitrogen fertilization reduces the capacity of soils to take up atmospheric carbonyl sulphide. Soil Systems 2, 62 (2018).

    CAS 

    Google Scholar
     

  • Deepagoda, T. K. K. C. et al. Density‐corrected models for gas diffusivity and air permeability in unsaturated soil. Vadose Zone J. 10, 226–238 (2011).

    CAS 

    Google Scholar
     

  • Millington, R. J. & Quirk, J. P. Permeability of porous solids. Trans. Faraday Soc. 57, 1200–1207 (1961).

    CAS 

    Google Scholar
     

  • Asaf, D. et al. Ecosystem photosynthesis inferred from measurements of carbonyl sulphide flux. Nat. Geosci. 6, 186–190 (2013).

    ADS 
    CAS 

    Google Scholar
     

  • Restrepo-Coupe, N. et al. LBA-ECO CD-32 flux tower network data compilation, Brazilian Amazon: 1999−2006, V2. ORNL DAAC (2021).

  • Wohlfahrt, G., Hammerle, A., Spielmann, F., Kitz, F. & Yi, C. Technical note: Novel estimates of the leaf relative uptake rate of carbonyl sulfide from optimality theory. Biogeosciences 20, 589–596 (2023).

    ADS 
    CAS 

    Google Scholar
     

  • Wehr, R. et al. Seasonality of temperate forest photosynthesis and daytime respiration. Nature 534, 680–683 (2016).

    ADS 
    CAS 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments