Thursday, November 14, 2024
No menu items!
HomeNatureTask-agnostic exoskeleton control via biological joint moment estimation

Task-agnostic exoskeleton control via biological joint moment estimation

  • Kim, J. et al. Reducing the metabolic rate of walking and running with a versatile, portable exosuit. Science 365, 668–672 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Witte, K. A., Fiers, P., Sheets-Singer, A. L. & Collins, S. H. Improving the energy economy of human running with powered and unpowered ankle exoskeleton assistance. Sci. Robot. 5, eaay9108 (2020).

    PubMed 

    Google Scholar
     

  • Slade, P., Kochenderfer, M. J., Delp, S. L. & Collins, S. H. Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Awad, L. N. et al. A soft robotic exosuit improves walking in patients after stroke. Sci. Transl. Med. 9, eaai9084 (2017).

    PubMed 

    Google Scholar
     

  • Malcolm, P., Derave, W., Galle, S. & Clercq, D. D. A simple exoskeleton that assists plantarflexion can reduce the metabolic cost of human walking. PLoS ONE 8, e56137 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mooney, L. M., Rouse, E. J. & Herr, H. M. Autonomous exoskeleton reduces metabolic cost of human walking during load carriage. J. NeuroEngineering Rehabil. 11, 80 (2014).


    Google Scholar
     

  • Ishmael, M. K., Archangeli, D. & Lenzi, T. Powered hip exoskeleton improves walking economy in individuals with above-knee amputation. Nat. Med. 27, 1783–1788 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Franks, P. W. et al. Comparing optimized exoskeleton assistance of the hip, knee, and ankle in single and multi-joint configurations. Wearable Technol. 2, e16 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baltrusch, S. J. et al. The effect of a passive trunk exoskeleton on metabolic costs during lifting and walking. Ergonomics 62, 903–916 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Lim, B. et al. Delayed output feedback control for gait assistance with a robotic hip exoskeleton. IEEE Trans. Robot. 35, 1055–1062 (2019).


    Google Scholar
     

  • Zhang, J. et al. Human-in-the-loop optimization of exoskeleton assistance during walking. Science 356, 1280–1284 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Shepherd, M. K., Molinaro, D. D., Sawicki, G. S. & Young, A. J. Deep learning enables exoboot control to augment variable-speed walking. IEEE Robot. Autom. Lett. 7, 3571–3577 (2022).


    Google Scholar
     

  • Gasparri, G. M., Luque, J. & Lerner, Z. F. Proportional joint-moment control for instantaneously adaptive ankle exoskeleton assistance. IEEE Trans. Neural Syst. Rehabil. Eng. 27, 751–759 (2019).

    PubMed 

    Google Scholar
     

  • Molinaro, D. D., Kang, I. & Young, A. J. Estimating human joint moments unifies exoskeleton control, reducing user effort. Sci. Robot. 9, eadi8852 (2024).

    PubMed 

    Google Scholar
     

  • Siviy, C. et al. Opportunities and challenges in the development of exoskeletons for locomotor assistance. Nat. Biomed. Eng. 7, 456–472 (2023).

    PubMed 

    Google Scholar
     

  • Sawicki, G. S., Beck, O. N., Kang, I. & Young, A. J. The exoskeleton expansion: improving walking and running economy. J. NeuroEngineering Rehabil. 17, 25 (2020).


    Google Scholar
     

  • Collins, S. H., Wiggin, M. B. & Sawicki, G. S. Reducing the energy cost of human walking using an unpowered exoskeleton. Nature 522, 212–215 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, J., Park, J., Kim, J., Park, S. & Lee, G. Reducing the energy cost of running using a lightweight, low-profile elastic exosuit. J. NeuroEngineering Rehabil. 18, 129 (2021).


    Google Scholar
     

  • Li, Y. D. & Hsiao-Wecksler, E. T. Gait mode recognition and control for a portable-powered ankle-foot orthosis. In Proc. 2013 IEEE 13th International Conference on Rehabilitation Robotics (ICORR) 1–8 (IEEE, 2013).

  • Laschowski, B., McNally, W., Wong, A. & McPhee, J. Environment classification for robotic leg prostheses and exoskeletons using deep convolutional neural networks. Front. Neurorobotics 15, 730965 (2022).


    Google Scholar
     

  • Kang, I., Molinaro, D. D., Choi, G., Camargo, J. & Young, A. J. Subject-independent continuous locomotion mode classification for robotic hip exoskeleton applications. IEEE Trans. Biomed. Eng. 69, 3234–3242 (2022).

    PubMed 

    Google Scholar
     

  • Camargo, J., Flanagan, W., Csomay-Shanklin, N., Kanwar, B. & Young, A. A machine learning strategy for locomotion classification and parameter estimation using fusion of wearable sensors. IEEE Trans. Biomed. Eng. 68, 1569–1578 (2021).

    PubMed 

    Google Scholar
     

  • Qian, Y. et al. Predictive locomotion mode recognition and accurate gait phase estimation for hip exoskeleton on various terrains. IEEE Robot. Autom. Lett. 7, 6439–6446 (2022).


    Google Scholar
     

  • Medrano, R. L., Thomas, G. C., Keais, C. G., Rouse, E. J. & Gregg, R. D. Real-time gait phase and task estimation for controlling a powered ankle exoskeleton on extremely uneven terrain. IEEE Trans. Robot. 39, 2170–2182 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kang, I. et al. Real-time gait phase estimation for robotic hip exoskeleton control during multimodal locomotion. IEEE Robot. Autom. Lett. 6, 3491–3497 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huo, W. et al. Impedance modulation control of a lower-limb exoskeleton to assist sit-to-stand movements. IEEE Trans. Robot. 38, 1230–1249 (2022).


    Google Scholar
     

  • Yang, X. et al. Spine-inspired continuum soft exoskeleton for stoop lifting assistance. IEEE Robot. Autom. Lett. 4, 4547–4554 (2019).


    Google Scholar
     

  • Shepherd, M. K. & Rouse, E. J. Design and validation of a torque-controllable knee exoskeleton for sit-to-stand assistance. IEEE ASME Trans. Mechatron. 22, 1695–1704 (2017).


    Google Scholar
     

  • Orendurff, M. S., Schoen, J. A., Bernatz, G. C., Segal, A. D. & Klute, G. K. How humans walk: bout duration, steps per bout, and rest duration. J. Rehabil. Res. Dev. 45, 1077–1089 (2008).

    PubMed 

    Google Scholar
     

  • Winter, D. in Biomechanics and Motor Control of Human Movement Ch. 5, 107–138 (John Wiley & Sons, Ltd, 2009).

  • Dorschky, E. et al. CNN-based estimation of sagittal plane walking and running biomechanics from measured and simulated inertial sensor data. Front. Bioeng. Biotechnol. 8, 604 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Molinaro, D. D., Kang, I., Camargo, J., Gombolay, M. C. & Young, A. J. Subject-independent, biological hip moment estimation during multimodal overground ambulation using deep learning. IEEE Trans. Med. Robot. Bionics 4, 219–229 (2022).


    Google Scholar
     

  • Camargo, J., Molinaro, D. & Young, A. Predicting biological joint moment during multiple ambulation tasks. J. Biomech. 134, 111020 (2022).

    PubMed 

    Google Scholar
     

  • Hossain, M. S. B., Guo, Z. & Choi, H. Estimation of lower extremity joint moments and 3D ground reaction forces using IMU sensors in multiple walking conditions: a deep learning approach. IEEE J. Biomed. Health Inform. https://doi.org/10.1109/JBHI.2023.3262164 (2023).

  • Lin, J., Divekar, N. V., Thomas, G. C. & Gregg, R. D. Optimally biomimetic passivity-based control of a lower-limb exoskeleton over the primary activities of daily life. IEEE Open J. Control Syst. 1, 15–28 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, J., Lin, J., Peddinti, V. & Gregg, R. D. Optimal energy shaping control for a backdrivable hip exoskeleton. In Proc. 2023 American Control Conference (ACC) 2065–2070 (IEEE, 2023).

  • Fang, Y., Orekhov, G. & Lerner, Z. F. Improving the energy cost of incline walking and stair ascent with ankle exoskeleton assistance in cerebral palsy. IEEE Trans. Biomed. Eng. 69, 2143–2152 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bishe, S. S. P. A., Nguyen, T., Fang, Y. & Lerner, Z. F. Adaptive ankle exoskeleton control: validation across diverse walking conditions. IEEE Trans. Med. Robot. Bionics 3, 801–812 (2021).


    Google Scholar
     

  • Tagoe, E. A., Fang, Y., Williams, J. R. & Lerner, Z. F. Walking on real-world terrain with an ankle exoskeleton in cerebral palsy. IEEE Trans. Med. Robot. Bionics 6, 202–212 (2024).

    PubMed 

    Google Scholar
     

  • Young, A. J. & Ferris, D. P. State of the art and future directions for lower limb robotic exoskeletons. IEEE Trans. Neural Syst. Rehabil. Eng. 25, 171–182 (2017).

    PubMed 

    Google Scholar
     

  • Delp, S. L. et al. OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans. Biomed. Eng. 54, 1940–1950 (2007).

    PubMed 

    Google Scholar
     

  • Seth, A. et al. OpenSim: simulating musculoskeletal dynamics and neuromuscular control to study human and animal movement. PLoS Comput. Biol. 14, e1006223 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scherpereel, K., Molinaro, D., Inan, O., Shepherd, M. & Young, A. A human lower-limb biomechanics and wearable sensors dataset during cyclic and non-cyclic activities. Sci. Data 10, 924 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ding, Y. et al. Effect of timing of hip extension assistance during loaded walking with a soft exosuit. J. NeuroEngineering Rehabil. 13, 87 (2016).


    Google Scholar
     

  • Ingraham, K. A., Tucker, M., Ames, A. D., Rouse, E. J. & Shepherd, M. K. Leveraging user preference in the design and evaluation of lower-limb exoskeletons and prostheses. Curr. Opin. Biomed. Eng. 28, 100487 (2023).


    Google Scholar
     

  • Winter, D. A. Biomechanical motor patterns in normal walking. J. Mot. Behav. 15, 302–330 (1983).

    CAS 
    PubMed 

    Google Scholar
     

  • Browning, R. C., Modica, J. R., Kram, R. & Goswami, A. The effects of adding mass to the legs on the energetics and biomechanics of walking. Med. Sci. Sports Exerc. 39, 515 (2007).

    PubMed 

    Google Scholar
     

  • Farris, D. J. & Sawicki, G. S. The mechanics and energetics of human walking and running: a joint level perspective. J. R. Soc. Interface 9, 110–118 (2012).

    PubMed 

    Google Scholar
     

  • Farris, D. J., Hampton, A., Lewek, M. D. & Sawicki, G. S. Revisiting the mechanics and energetics of walking in individuals with chronic hemiparesis following stroke: from individual limbs to lower limb joints. J. NeuroEngineering Rehabil. 12, 24 (2015).


    Google Scholar
     

  • Farris, D. J. & Sawicki, G. S. Linking the mechanics and energetics of hopping with elastic ankle exoskeletons. J. Appl. Physiol. 113, 1862–1872 (2012).

    PubMed 

    Google Scholar
     

  • Camargo, J., Ramanathan, A., Flanagan, W. & Young, A. A comprehensive, open-source dataset of lower limb biomechanics in multiple conditions of stairs, ramps, and level-ground ambulation and transitions. J. Biomech. 119, 110320 (2021).

    PubMed 

    Google Scholar
     

  • Reznick, E. et al. Lower-limb kinematics and kinetics during continuously varying human locomotion. Sci. Data 8, 282 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Winter, D. A., Sidwall, H. G. & Hobson, D. A. Measurement and reduction of noise in kinematics of locomotion. J. Biomech. 7, 157–159 (1974).

    CAS 
    PubMed 

    Google Scholar
     

  • Molinaro, D. D., Park, E. O. & Young, A. J. Anticipation and delayed estimation of sagittal plane human hip moments using deep learning and a robotic hip exoskeleton. In Proc. 2023 IEEE International Conference on Robotics and Automation (ICRA) 12679–12685 (IEEE, 2023).

  • Bai, S., Kolter, J. Z. & Koltun, V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. Preprint at https://doi.org/10.48550/arXiv.1803.01271 (2018).

  • Golovin, D. et al. Google Vizier: a service for black-box optimization. In Proc. 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 1487–1495 (Association for Computing Machinery, 2017).

  • Lim, H., Kim, B. & Park, S. Prediction of lower limb kinetics and kinematics during walking by a single IMU on the lower back using machine learning. Sensors 20, 130 (2020).

    ADS 

    Google Scholar
     

  • Mundt, M. et al. A comparison of three neural network approaches for estimating joint angles and moments from inertial measurement units. Sensors 21, 4535 (2021).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ancillao, A., Tedesco, S., Barton, J. & O’Flynn, B. Indirect measurement of ground reaction forces and moments by means of wearable inertial sensors: a systematic review. Sensors 18, 2564 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Forner-Cordero, A., Koopman, H. J. F. M. & van der Helm, F. C. T. Inverse dynamics calculations during gait with restricted ground reaction force information from pressure insoles. Gait Posture 23, 189–199 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • Nuckols, R. W. et al. Mechanics of walking and running up and downhill: a joint-level perspective to guide design of lower-limb exoskeletons. PLoS ONE 15, e0231996 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alexander, N., Strutzenberger, G., Ameshofer, L. M. & Schwameder, H. Lower limb joint work and joint work contribution during downhill and uphill walking at different inclinations. J. Biomech. 61, 75–80 (2017).

    PubMed 

    Google Scholar
     

  • Lenton, G. K. et al. Lower-limb joint work and power are modulated during load carriage based on load configuration and walking speed. J. Biomech. 83, 174–180 (2019).

    PubMed 

    Google Scholar
     

  • Poggensee, K. L. & Collins, S. H. How adaptation, training, and customization contribute to benefits from exoskeleton assistance. Sci. Robot. 6, eabf1078 (2021).

    PubMed 

    Google Scholar
     

  • Brockway, J. M. Derivation of formulae used to calculate energy expenditure in man. Hum. Nutr. Clin. Nutr. 41, 463–471 (1987).

    CAS 
    PubMed 

    Google Scholar
     

  • Selinger, J. C. & Donelan, J. M. Estimating instantaneous energetic cost during non-steady-state gait. J. Appl. Physiol. 117, 1406–1415 (2014).

    PubMed 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments