Thursday, October 24, 2024
No menu items!
HomeNatureTargeting immune–fibroblast cell communication in heart failure

Targeting immune–fibroblast cell communication in heart failure

  • Medzhitov, R. Origin and physiological roles of inflammation. Nature 454, 428–435 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Frangogiannis, N. G. Cardiac fibrosis. Cardiovasc. Res. 117, 1450–1488 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rurik, J. G. et al. CAR T cells produced in vivo to treat cardiac injury. Science 375, 91–96 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aghajanian, H. et al. Targeting cardiac fibrosis with engineered T cells. Nature 573, 430–433 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gutstein, D. E. & Fuster, V. Pathophysiology and clinical significance of atherosclerotic plaque rupture. Cardiovasc. Res. 41, 323–333 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thygesen, K. et al. Third universal definition of myocardial infarction. Circulation 126, 2020–2035 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Fu, X. et al. Specialized fibroblast differentiated states underlie scar formation in the infarcted mouse heart. J. Clin. Invest. 128, 2127–2143 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kanisicak, O. et al. Genetic lineage tracing defines myofibroblast origin and function in the injured heart. Nat. Commun. 7, 12260 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ivey, M. J. et al. Resident fibroblast expansion during cardiac growth and remodeling. J. Mol. Cell. Cardiol. 114, 161–174 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Forte, E. et al. Dynamic interstitial cell response during myocardial infarction predicts resilience to rupture in genetically diverse mice. Cell Rep. https://doi.org/10.1016/j.celrep.2020.02.008 (2020).

  • Martini, E. et al. Single-cell sequencing of mouse heart immune infiltrate in pressure overload–driven heart failure reveals extent of immune activation. Circulation 140, 2089–2107 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zaman, R. et al. Selective loss of resident macrophage-derived insulin-like growth factor-1 abolishes adaptive cardiac growth to stress. Immunity 54, 2057–2071.e6 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dick, S. A. et al. Self-renewing resident cardiac macrophages limit adverse remodeling following myocardial infarction. Nat. Immunol. 20, 29 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Matsa, E., Burridge, P. W. & Wu, J. C. Human stem cells for modeling heart disease and for drug discovery. Sci. Transl. Med. 6, 239ps6 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Herum, K. M. et al. Cardiac fibroblast sub-types in vitro reflect pathological cardiac remodeling in vivo. Matrix Biol. Plus 15, 100113 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Villani, A. C. et al. Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science 356, eaah4573 (2017).

  • Amrute, J. M. et al. Cell specific peripheral immune responses predict survival in critical COVID-19 patients. Nat. Commun. 13, 882 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tucker, N. R. et al. Transcriptional and cellular diversity of the human heart. Circulation 142, 466–482 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chaffin, M. et al. Single-nucleus profiling of human dilated and hypertrophic cardiomyopathy. Nature https://doi.org/10.1038/S41586-022-04817-8 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Koenig, A. L. et al. Single-cell transcriptomics reveals cell-type-specific diversification in human heart failure. Nat. Cardiovasc. Res. 1, 263–280 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Litviňuková, M. et al. Cells of the adult human heart. Nature 588, 466–472 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reichart, D. et al. Pathogenic variants damage cell composition and single cell transcription in cardiomyopathies. Science 377, eabo1984 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stoeckius, M. et al. Simultaneous epitope and transcriptome measurement in single cells. Nat. Methods https://doi.org/10.1038/nmeth.4380 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Trevino, A. E. et al. Chromatin and gene-regulatory dynamics of the developing human cerebral cortex at single-cell resolution. Cell 184, 5053–5069.e23 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kuppe, C. et al. Spatial multi-omic map of human myocardial infarction. Nature https://doi.org/10.1038/s41586-022-05060-x (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buechler, M. B. et al. Cross-tissue organization of the fibroblast lineage. Nature 593, 575–579 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • RC, W. et al. Atheroprotective roles of smooth muscle cell phenotypic modulation and the TCF21 disease gene as revealed by single-cell analysis. Nat. Med. 25, 1280–1289 (2019).

    Article 

    Google Scholar
     

  • Alexanian, M. et al. A transcriptional switch governs fibroblast activation in heart disease. Nature 595, 438–443 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Amrute, J. M. et al. Defining cardiac functional recovery in end-stage heart failure at single-cell resolution. Nat. Cardiovasc. Res. 2, 399–416 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alexanian, M. et al. Chromatin remodelling drives immune–fibroblast crosstalk in heart failure pathogenesis. Nature https://doi.org/10.1038/s41586-024-08085-6 (2024).

  • Ridker, P. M. et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 377, 1119–1131 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tanevski, J., Flores, R. O. R., Gabor, A., Schapiro, D. & Saez-Rodriguez, J. Explainable multiview framework for dissecting spatial relationships from highly multiplexed data. Genome Biol. 23, 1–31 (2022).

    Article 

    Google Scholar
     

  • Lavine, K. J., Long, F., Choi, K., Smith, C. & Ornitz, D. M. Hedgehog signaling to distinct cell types differentially regulates coronary artery and vein development. Development 135, 3161–3171 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kadyrov, F. F. et al. Hypoxia sensing in resident cardiac macrophages regulates monocyte fate specification following ischemic heart injury. Preprint at bioRxiv https://doi.org/10.1101/2022.08.04.502542 (2023).

  • Koenig, A. L. et al. Genetic mapping of monocyte fate decisions following myocardial infarction. Preprint at bioRxiv https://doi.org/10.1101/2023.12.24.573263 (2023).

  • Strunk, M. et al. Toward quantitative multisite preclinical imaging studies in acute myocardial infarction: evaluation of the immune-fibrosis axis. J. Nucl. Med. 65, 287–293 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hall, C., Gehmlich, K., Denning, C. & Pavlovic, D. Complex relationship between cardiac fibroblasts and cardiomyocytes in health and disease. J. Am. Heart Assoc. 10, 1–15 (2021).

    Article 

    Google Scholar
     

  • Xin, L. et al. Fibroblast activation protein-α as a target in the bench-to-bedside diagnosis and treatment of tumors: a narrative review. Front. Oncol. 11, 3187 (2021).

    Article 

    Google Scholar
     

  • Khalil, H. et al. Fibroblast-specific TGF-β–Smad2/3 signaling underlies cardiac fibrosis. J. Clin. Invest. 127, 3770–3783 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stratton, M. S. et al. Dynamic chromatin targeting of BRD4 stimulates cardiac fibroblast activation. Circ. Res. 125, 662 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bujak, M. & Frangogiannis, N. G. The role of interleukin-1 in the pathogenesis of heart disease. Arch. Immunol. Ther. Exp. (Warsz.) 57, 165 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bajpai, G. et al. Tissue resident CCR2− and CCR2+ cardiac macrophages differentially orchestrate monocyte recruitment and fate specification following myocardial injury. Circ. Res. 124, 263–278 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bajpai, G. et al. The human heart contains distinct macrophage subsets with divergent origins and functions. Nat. Med. 24, 1234–1245 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ikeuchi, M. et al. Inhibition of TGF-β signaling exacerbates early cardiac dysfunction but prevents late remodeling after infarction. Cardiovasc. Res. 64, 526–535 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dewald, O. et al. CCL2/monocyte chemoattractant protein-1 regulates inflammatory responses critical to healing myocardial infarcts. Circ. Res. 96, 881–889 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mulè, M. P., Martins, A. J. & Tsang, J. S. Normalizing and denoising protein expression data from droplet-based single cell profiling. Nat. Commun. 13, 2099 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hafemeister, C. & Satija, R. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biol. 20, 1–15 (2019).

    Article 

    Google Scholar
     

  • Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587.e29 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 1–21 (2014).

    Article 

    Google Scholar
     

  • Bergen, V., Lange, M., Peidli, S., Wolf, F. A. & Theis, F. J. Generalizing RNA velocity to transient cell states through dynamical modeling. Nat. Biotechnol. 38, 1408–1414 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, T. et al. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation 2, 100141 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schubert, M. et al. Perturbation-response genes reveal signaling footprints in cancer gene expression. Nat. Commun. 9, 20 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments