Friday, June 13, 2025
No menu items!
HomeNatureTargeting GRPR for sex hormone-dependent cancer after loss of E-cadherin

Targeting GRPR for sex hormone-dependent cancer after loss of E-cadherin

  • Dong, M. et al. Sex differences in cancer incidence and survival: a pan-cancer analysis. Cancer Epidemiol. Biomarkers Prev. 29, 1389–1397 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Ye, Y. et al. Sex-associated molecular differences for cancer immunotherapy. Nat. Commun. 11, 1779 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vellano, C. P. et al. Androgen receptor blockade promotes response to BRAF/MEK-targeted therapy. Nature 606, 797–803 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, Y., Wang, X., Liu, Y., Wang, H.-Y. & Xiang, J. The effects of estrogen on targeted cancer therapy drugs. Pharmacol. Res. 177, 106131 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rubin, J. B. et al. Sex differences in cancer mechanisms. Biol. Sex Differ. 11, 17 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sung, H. et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209–249 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Cook, M. B. et al. Sex disparities in cancer incidence by period and age. Cancer Epidemiol. Biomarkers Prev. 18, 1174–1182 (2009).

  • Metcalfe, A. et al. Incidence of pregnancy-associated cancer in two Canadian provinces: a population-based study. Int. J. Environ. Res. Public Health 18, 3100 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, Y. Y. et al. Incidence and outcomes of pregnancy-associated cancer in Australia, 1994–2008: a population-based linkage study. BJOG 119, 1572–1582 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Benyi, E. et al. Risks of malignant and non-malignant tumours in tall women treated with high-dose oestrogen during adolescence. Horm. Res. Paediatr. 82, 89–96 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ackermann, J. et al. Metastasizing melanoma formation caused by expression of activated N-RasQ61K on an INK4a-deficient background. Cancer Res. 65, 4005–4011 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Raymond, J. H., Aktary, Z., Larue, L. & Delmas, V. Targeting GPCRs and their signaling as a therapeutic option in melanoma. Cancers 14, 706 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Farshidfar, F. et al. Integrative molecular and clinical profiling of acral melanoma links focal amplification of 22q11.21 to metastasis. Nat. Commun. 13, 898 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, F.-X. et al. Mutant Gq/11 promote uveal melanoma tumorigenesis by activating YAP. Cancer Cell 25, 822–830 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Verfaillie, A. et al. Decoding the regulatory landscape of melanoma reveals TEADS as regulators of the invasive cell state. Nat. Commun. 6, 6683 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, X. et al. The Hippo pathway oncoprotein YAP promotes melanoma cell invasion and spontaneous metastasis. Oncogene 39, 5267–5281 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, B. et al. YAP activation in melanoma contributes to anoikis resistance and metastasis. Exp. Biol. Med. (Maywood) 246, 888–896 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sommer, S. & Fuqua, S. A. Estrogen receptor and breast cancer. Semin. Cancer Biol. 11, 339–352 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Berx, G. & Van Roy, F. The E-cadherin/catenin complex: an important gatekeeper in breast cancer tumorigenesis and malignant progression. Breast Cancer Res. 3, 289–293 (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guilford, P. et al. E-cadherin germline mutations in familial gastric cancer. Nature 392, 402–405 (1998).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Uhlén, M. et al. Proteomics. Tissue-based map of the human proteome. Science 347, 1260419 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Cano, A. et al. The transcription factor Snail controls epithelial–mesenchymal transitions by repressing E-cadherin expression. Nat. Cell Biol. 2, 76–83 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Venza, M. et al. DNA methylation-induced E-cadherin silencing is correlated with the clinicopathological features of melanoma. Oncol. Rep. 35, 2451–2460 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Larue, L. & Delmas, V. The WNT/Beta-catenin pathway in melanoma. Front. Biosci. 11, 733–742 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Avberšek, M., Žegura, B., Filipič, M., Uranjek-Ževart, N. & Heath, E. Determination of estrogenic potential in waste water without sample extraction. J. Hazard. Mater. 260, 527–533 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Robinson, D. R. et al. Activating ESR1 mutations in hormone-resistant metastatic breast cancer. Nat. Genet. 45, 1446–1451 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, X.-Y. et al. Unidirectional cross-activation of GRPR by MOR1D uncouples itch and analgesia induced by opioids. Cell 147, 447–458 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Herzig, M., Savarese, F., Novatchkova, M., Semb, H. & Christofori, G. Tumor progression induced by the loss of E-cadherin independent of β-catenin/Tcf-mediated Wnt signaling. Oncogene 26, 2290–2298 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jeanes, A., Gottardi, C. J. & Yap, A. S. Cadherins and cancer: how does cadherin dysfunction promote tumor progression? Oncogene 27, 6920–6929 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Larue, L. et al. A role for cadherins in tissue formation. Development 122, 3185–3194 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Morali, O. G. et al. IGF-II induces rapid β-catenin relocation to the nucleus during epithelium to mesenchyme transition. Oncogene 20, 4942–4950 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qian, X., Karpova, T., Sheppard, A. M., McNally, J. & Lowy, D. R. E-cadherin-mediated adhesion inhibits ligand-dependent activation of diverse receptor tyrosine kinases. EMBO J. 23, 1739–1748 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Elangovan, A. et al. Loss of E-cadherin induces IGF1R activation and reveals a targetable pathway in invasive lobular breast carcinoma. Mol. Cancer Res. 20, 1405–1419 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Johnson, K. S. et al. CTCF expression and dynamic motif accessibility modulates epithelial-mesenchymal gene expression. Cancers 14, 209 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Centore, R. C., Sandoval, G. J., Soares, L. M. M., Kadoch, C. & Chan, H. M. Mammalian SWI/SNF chromatin remodeling complexes: emerging mechanisms and therapeutic strategies. Trends Genet. 36, 936–950 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hsiao, P.-W., Fryer, C. J., Trotter, K. W., Wang, W. & Archer, T. K. BAF60a mediates critical interactions between nuclear receptors and the BRG1 chromatin-remodeling complex for transactivation. Mol. Cell. Biol. 23, 6210–6220 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Emons, G. Hormone-dependent cancers: molecular mechanisms and therapeutical implications. Cells 12, 110 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rižner, T. L. & Romano, A. Targeting the formation of estrogens for treatment of hormone dependent diseases–current status. Front. Pharmacol. 14, 1155558 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saeki, A., Yamanaka, H., Kobayashi, K., Okubo, M. & Noguchi, K. Analgesic effect of gastrin-releasing peptide in the dorsal horn. Mol. Pain 18, 17448069221108965 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Polgár, E. et al. Grpr expression defines a population of superficial dorsal horn vertical cells that have a role in both itch and pain. Pain 164, 149–170 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Patel, O., Shulkes, A. & Baldwin, G. S. Gastrin-releasing peptide and cancer. Biochim. Biophys. Acta 1766, 23–41 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • Schwartsmann, G. et al. A phase I trial of the bombesin/gastrin-releasing peptide (BN/GRP) antagonist RC3095 in patients with advanced solid malignancies. Invest. New Drugs 24, 403–412 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hampton, L. L. et al. Loss of bombesin-induced feeding suppression in gastrin-releasing peptide receptor-deficient mice. Proc. Natl Acad. Sci. USA 95, 3188–3192 (1998).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, Z.-F. A neuropeptide code for itch. Nat. Rev. Neurosci. 22, 758–776 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peng, S. et al. Structures of human gastrin-releasing peptide receptors bound to antagonist and agonist for cancer and itch therapy. Proc. Natl Acad. Sci. USA 120, e2216230120 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, C. et al. Molecular recognition of itch-associated neuropeptides by bombesin receptors. Cell Res. 33, 184–187 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pobbati, A. V. & Hong, W. A combat with the YAP/TAZ-TEAD oncoproteins for cancer therapy. Theranostics 10, 3622–3635 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • He, Z., Li, R. & Jiang, H. Mutations and copy number abnormalities of Hippo pathway components in human cancers. Front. Cell Dev. Biol. 9, 661718 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mills, K. R., Misra, J. & Torabifard, H. Allosteric modulation of the YAP/TAZ-TEAD interaction by palmitoylation and small-molecule inhibitors. J. Phys. Chem. B 128, 3795–3806 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Deltourbe, L. G. et al. Steroid hormone levels vary with sex, aging, lifestyle, and genetic. Sci. Adv. 11, eadu6094 (2025).

  • Colaprico, A. et al. TCGAbiolinks: an R/Bioconductor package for integrative analysis of TCGA data. Nucleic Acids Res. 44, e71 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Rambow, F. et al. Toward minimal residual disease-directed therapy in melanoma. Cell 174, 843–855 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maag, J. L. V. gganatogram: An R package for modular visualisation of anatograms and tissues based on ggplot2. F1000Research https://doi.org/10.12688/f1000research.16409.2 (2018).

  • Delmas, V. et al. β-Catenin induces immortalization of melanocytes by suppressing p16INK4a expression and cooperates with N-Ras in melanoma development. Genes Dev. 21, 2923–2935 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boussadia, O., Kutsch, S., Hierholzer, A., Delmas, V. & Kemler, R. E-cadherin is a survival factor for the lactating mouse mammary gland. Mech. Dev. 115, 53–62 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Delmas, V., Martinozzi, S., Bourgeois, Y., Holzenberger, M. & Larue, L. Cre-mediated recombination in the skin melanocyte lineage. Genesis 36, 73–80 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Serrano, M. et al. Role of the INK4a locus in tumor suppression and cell mortality. Cell 85, 27–37 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lesche, R. et al. Cre/loxP-mediated inactivation of the murine Pten tumor suppressor gene. Genesis 32, 148–149 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hamm, M. et al. BRN2 is a non-canonical melanoma tumor-suppressor. Nat. Commun. 12, 3707 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Leek, J. T., Johnson, W. E., Parker, H. S., Jaffe, A. E. & Storey, J. D. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics 28, 882–883 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).

  • Petit, V. et al. C57BL/6 congenic mouse NRASQ61K melanoma cell lines are highly sensitive to the combination of Mek and Akt inhibitors in vitro and in vivo. Pigment Cell Melanoma Res. 32, 829–841 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cailleau, R., Olivé, M. & Cruciger, Q. V. Long-term human breast carcinoma cell lines of metastatic origin: preliminary characterization. In Vitro 14, 911–915 (1978).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Marincola, F. M. et al. Loss of HLA haplotype and B locus down-regulation in melanoma cell lines. J. Immunol. 153, 1225–1237 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rambow, F. et al. New functional signatures for understanding melanoma biology from tumor cell lineage-specific analysis. Cell Rep. 13, 840–853 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Soule, H. D., Vazguez, J., Long, A., Albert, S. & Brennan, M. A human cell line from a pleural effusion derived from a breast carcinoma. J. Natl Cancer Inst. 51, 1409–1416 (1973).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chirumamilla, C. S. et al. Profiling activity of cellular kinases in migrating T-cells. Methods Mol. Biol. 1930, 99–113 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Johnson, W. E., Li, C. & Rabinovic, A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 8, 118–127 (2007).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Motakis, E. S., Nason, G. P., Fryzlewicz, P. & Rutter, G. A. Variance stabilization and normalization for one-color microarray data using a data-driven multiscale approach. Bioinformatics 22, 2547–2553 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • The Galaxy Community. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2022 update. Nucleic Acids Res. 50, W345–W351 (2022).

    Article 

    Google Scholar
     

  • Langmead, B., Wilks, C., Antonescu, V. & Charles, R. Scaling read aligners to hundreds of threads on general-purpose processors. Bioinformatics 35, 421–432 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hewitt, S. C. et al. Research resource: whole-genome estrogen receptor α binding in mouse uterine tissue revealed by ChIP-seq. Mol. Endocrinol. 26, 887–898 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Park, J.-S. et al. Six2 and Wnt regulate self-renewal and commitment of nephron progenitors through shared gene regulatory networks. Dev. Cell 23, 637–651 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rhie, S. K. et al. Identification of activated enhancers and linked transcription factors in breast, prostate, and kidney tumors by tracing enhancer networks using epigenetic traits. Epigenetics Chromatin 9, 50 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nair, S. J. et al. Phase separation of ligand-activated enhancers licenses cooperative chromosomal enhancer assembly. Nat. Struct. Mol. Biol. 26, 193–203 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ross-Innes, C. S. et al. Differential oestrogen receptor binding is associated with clinical outcome in breast cancer. Nature 481, 389–393 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Estarás, C., Benner, C. & Jones, K. A. SMADs and YAP compete to control elongation of β-catenin:LEF-1-recruited RNAPII during hESC differentiation. Mol. Cell 58, 780–793 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Perovanovic, J. et al. Oct1 cooperates with the Smad family of transcription factors to promote mesodermal lineage specification. Sci. Signal. 16, eadd5750 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luo, Y. et al. New developments on the Encyclopedia of DNA Elements (ENCODE) data portal. Nucleic Acids Res. 48, D882–D889 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dixon, J. R. et al. Chromatin architecture reorganization during stem cell differentiation. Nature 518, 331–336 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, G., Wang, L.-G. & He, Q.-Y. ChIPseeker: an R/Bioconductor package for ChIP peak annotation, comparison and visualization. Bioinformatics 31, 2382–2383 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments