Friday, February 13, 2026
No menu items!
HomeNatureTargeting excessive cholesterol deposition alleviates secondary lymphoedema

Targeting excessive cholesterol deposition alleviates secondary lymphoedema

  • Rockson, S. G. Advances in lymphedema. Circ. Res. 128, 2003–2016 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rockson, S. G. Lymphedema, inflammation, and fat. Lymphat. Res. Biol. 19, 115 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Oliver, G., Kipnis, J., Randolph, G. J. & Harvey, N. L. The lymphatic vasculature in the 21(st) century: novel functional roles in homeostasis and disease. Cell 182, 270–296 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rockson, S. G. Lymphedema. Am. J. Med. 110, 288–295 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Witte, C. L. Pumps and lymphedema. Lymphology 34, 150–151 (2001).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Brorson, H., Ohlin, K., Olsson, G. & Karlsson, M. K. Breast cancer-related chronic arm lymphedema is associated with excess adipose and muscle tissue. Lymphat. Res. Biol. 7, 3–10 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Huang, L. H., Elvington, A. & Randolph, G. J. The role of the lymphatic system in cholesterol transport. Front. Pharmacol. 6, 182 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martel, C. et al. Lymphatic vasculature mediates macrophage reverse cholesterol transport in mice. J. Clin. Invest. 123, 1571–1579 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lim, H. Y. et al. Lymphatic vessels are essential for the removal of cholesterol from peripheral tissues by SR-BI-mediated transport of HDL. Cell Metab. 17, 671–684 (2013).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Burton, J. S., Sletten, A. C., Marsh, E., Wood, M. D. & Sacks, J. M. Adipose tissue in lymphedema: a central feature of pathology and target for pharmacologic therapy. Lymphat. Res. Biol. 21, 2–7 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, S. X., Zhang, L. J. & Gallo, R. L. Dermal white adipose tissue: a newly recognized layer of skin innate defense. J. Invest. Dermatol. 139, 1002–1009 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cinti, S. et al. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J. Lipid Res. 46, 2347–2355 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Strissel, K. J. et al. Adipocyte death, adipose tissue remodeling, and obesity complications. Diabetes 56, 2910–2918 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Avraham, T. et al. Th2 differentiation is necessary for soft tissue fibrosis and lymphatic dysfunction resulting from lymphedema. FASEB J. 27, 1114–1126 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ghaben, A. L. & Scherer, P. E. Adipogenesis and metabolic health. Nat. Rev. Mol. Cell Biol. 20, 242–258 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun, K., Kusminski, C. M. & Scherer, P. E. Adipose tissue remodeling and obesity. J. Clin. Invest. 121, 2094–2101 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vasilenko, M. A. et al. The role of production of adipsin and leptin in the development of insulin resistance in patients with abdominal obesity. Dokl. Biochem. Biophys. 475, 271–276 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Prentice, K. J., Saksi, J. & Hotamisligil, G. S. Adipokine FABP4 integrates energy stores and counterregulatory metabolic responses. J. Lipid Res. 60, 734–740 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schwartz, D. R. & Lazar, M. A. Human resistin: found in translation from mouse to man. Trends Endocrinol. Metab. 22, 259–265 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hosogai, N. et al. Adipose tissue hypoxia in obesity and its impact on adipocytokine dysregulation. Diabetes 56, 901–911 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bambace, C. et al. Adiponectin gene expression and adipocyte diameter: a comparison between epicardial and subcutaneous adipose tissue in men. Cardiovasc. Pathol. 20, e153–e156 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Meyer, L. K., Ciaraldi, T. P., Henry, R. R., Wittgrove, A. C. & Phillips, S. A. Adipose tissue depot and cell size dependency of adiponectin synthesis and secretion in human obesity. Adipocyte 2, 217–226 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kruth, H. S. Histochemical detection of esterified cholesterol within human atherosclerotic lesions using the fluorescent probe filipin. Atherosclerosis 51, 281–292 (1984).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lim, H. Y. et al. Hypercholesterolemic mice exhibit lymphatic vessel dysfunction and degeneration. Am. J. Pathol. 175, 1328–1337 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Davis, M. J. et al. Multiple aspects of lymphatic dysfunction in an ApoE−/− mouse model of hypercholesterolemia. Front. Physiol. 13, 1098408 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Tall, A. R., Yvan-Charvet, L., Terasaka, N., Pagler, T. & Wang, N. HDL, ABC transporters, and cholesterol efflux: implications for the treatment of atherosclerosis. Cell Metab. 7, 365–375 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rader, D. J., Alexander, E. T., Weibel, G. L., Billheimer, J. & Rothblat, G. H. The role of reverse cholesterol transport in animals and humans and relationship to atherosclerosis. J. Lipid Res. 50, S189–S194 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Angeli, V. et al. Dyslipidemia associated with atherosclerotic disease systemically alters dendritic cell mobilization. Immunity 21, 561–574 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cochran, B. J., Ong, K. L., Manandhar, B. & Rye, K. A. APOA1: a protein with multiple therapeutic functions. Curr. Atheroscler. Rep. 23, 11 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bergt, C. et al. The myeloperoxidase product hypochlorous acid oxidizes HDL in the human artery wall and impairs ABCA1-dependent cholesterol transport. Proc. Natl Acad. Sci. USA 101, 13032–13037 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Peng, D. Q. et al. Apolipoprotein A-I tryptophan substitution leads to resistance to myeloperoxidase-mediated loss of function. Arterioscler. Thromb. Vasc. Biol. 28, 2063–2070 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Atger, V. M. et al. Cyclodextrins as catalysts for the removal of cholesterol from macrophage foam cells. J. Clin. Invest. 99, 773–780 (1997).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kritharides, L., Kus, M., Brown, A. J., Jessup, W. & Dean, R. T. Hydroxypropyl-β-cyclodextrin-mediated efflux of 7-ketocholesterol from macrophage foam cells. J. Biol. Chem. 271, 27450–27455 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, S. M. et al. Cyclodextrins differentially mobilize free and esterified cholesterol from primary human foam cell macrophages. J. Lipid Res. 44, 1156–1166 (2003).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Zimmer, S. et al. Cyclodextrin promotes atherosclerosis regression via macrophage reprogramming. Sci. Transl. Med. 8, 333ra350 (2016).

    Article 

    Google Scholar
     

  • Davies, B. & Morris, T. Physiological parameters in laboratory animals and humans. Pharm. Res. 10, 1093–1095 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stella, V. J. & He, Q. Cyclodextrins. Toxicol. Pathol. 36, 30–42 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jun, H. et al. Modified mouse models of chronic secondary lymphedema: tail and hind limb models. Ann. Vasc. Surg. 43, 288–295 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weber, E. et al. Lymphatic collecting vessels in health and disease: a review of histopathological modifications in lymphedema. Lymphat. Res. Biol. 20, 468–477 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oashi, K. et al. Pathophysiological characteristics of melanoma in-transit metastasis in a lymphedema mouse model. J. Invest. Dermatol. 133, 537–544 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Roh, K. et al. Therapeutic effects of hyaluronidase on acquired lymphedema using a newly developed mouse limb model. Exp. Biol. Med. 242, 584–592 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Ikomi, F. et al. Critical roles of VEGF-C-VEGF receptor 3 in reconnection of the collecting lymph vessels in mice. Microcirculation 15, 591–603 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tassenoy, A. et al. Demonstration of tissue alterations by ultrasonography, magnetic resonance imaging and spectroscopy, and histology in breast cancer patients without lymphedema after axillary node dissection. Lymphology 39, 118–126 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, J., Hoffner, M. & Brorson, H. Adipocytes are larger in lymphedematous extremities than in controls. J. Plast. Surg. Hand. Surg. 56, 172–179 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Petrova, T. V. & Koh, G. Y. Biological functions of lymphatic vessels. Science 369, eaax4063 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shimizu, Y. et al. Adiponectin-mediated modulation of lymphatic vessel formation and lymphedema. J. Am. Heart Assoc. 2, e000438 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • De Nardo, D. et al. High-density lipoprotein mediates anti-inflammatory reprogramming of macrophages via the transcriptional regulator ATF3. Nat. Immunol. 15, 152–160 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Onishi, F. & Tan, B. K. Lymph node transfer using the middle jugular lymph node flap: anatomical study and a report of two cases. JPRAS Open 44, 430–440 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tan, K. W. et al. Neutrophils contribute to inflammatory lymphangiogenesis by increasing VEGF-A bioavailability and secreting VEGF-D. Blood 122, 3666–3677 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Strand, K. et al. Subtype-specific surface proteins on adipose tissue macrophages and their association to obesity-induced insulin resistance. Front. Endocrinol. 13, 856530 (2022).

    Article 

    Google Scholar
     

  • Wentworth, J. M. et al. Pro-inflammatory CD11c+CD206+ adipose tissue macrophages are associated with insulin resistance in human obesity. Diabetes 59, 1648–1656 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cochran, B. J. et al. Apolipoprotein A-I increases insulin secretion and production from pancreatic beta-cells via a G-protein–cAMP–PKA–FoxO1-dependent mechanism. Arterioscler. Thromb. Vasc. Biol. 34, 2261–2267 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Holm, S. A simple sequentially rejective multiple test procedure. Scand. J. Stat. 6, 65–70 (1979).

    MathSciNet 

    Google Scholar
     

  • Krzywinski, M. & Altman, N. Points of significance: comparing samples-part I. Nat. Methods 11, 215–216 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments