Friday, September 20, 2024
No menu items!
HomeNatureTargeted protein relocalization via protein transport coupling

Targeted protein relocalization via protein transport coupling

  • Kau, T. R., Way, J. C. & Silver, P. A. Nuclear transport and cancer: from mechanism to intervention. Nat. Rev. Cancer 4, 106–117 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Suk, T. R. & Rousseaux, M. W. C. The role of TDP-43 mislocalization in amyotrophic lateral sclerosis. Mol. Neurodegener. 15, 45 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hung, M.-C. & Link, W. Protein localization in disease and therapy. J. Cell Sci. 124, 3381–3392 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Krauss, R., Bosanac, T., Devraj, R., Engber, T. & Hughes, R. O. Axons matter: the promise of treating neurodegenerative disorders by targeting SARM1-mediated axonal degeneration. Trends Pharmacol. Sci. 41, 281–293 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thul, P. J. et al. A subcellular map of the human proteome. Science 356, eaal3321 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, X. & Li, S. Protein mislocalization: mechanisms, functions and clinical applications in cancer. Biochim. Biophys. Acta 1846, 13–25 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hill, R., Cautain, B., de Pedro, N. & Link, W. Targeting nucleocytoplasmic transport in cancer therapy. Oncotarget 5, 11–28 (2013).

    Article 
    PubMed Central 

    Google Scholar
     

  • Pasha, T. et al. Karyopherin abnormalities in neurodegenerative proteinopathies. Brain 144, 2915–2932 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, Y. et al. Pathogenic mutations in the ALS gene CCNF cause cytoplasmic mislocalization of Cyclin F and elevated VCP ATPase activity. Hum. Mol. Genet. 28, 3486–3497 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chou, C.-C. et al. TDP-43 pathology disrupts nuclear pore complexes and nucleocytoplasmic transport in ALS/FTD. Nat. Neurosci. 21, 228–239 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Birsa, N., Bentham, M. P. & Fratta, P. Cytoplasmic functions of TDP-43 and FUS and their role in ALS. Semin. Cell Dev. Biol. 99, 193–201 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vance, C. et al. ALS mutant FUS disrupts nuclear localization and sequesters wild-type FUS within cytoplasmic stress granules. Hum. Mol. Genet. 22, 2676–2688 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, A. Y. & Liu, H. The past, present, and future of CRM1/XPO1 inhibitors. Stem Cell Investig. 6, 6 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jans, D. A., Martin, A. J. & Wagstaff, K. M. Inhibitors of nuclear transport. Curr. Opin. Cell Biol. 58, 50–60 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Syed, Y. Y. Selinexor: first global approval. Drugs 79, 1485–1494 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Abdul Razak, A. R. et al. First-in-class, first-in-human phase I study of selinexor, a selective inhibitor of nuclear export, in patients with advanced solid tumors. J. Clin. Oncol. 34, 4142–4150 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Griffith, M. et al. DGIdb: mining the druggable genome. Nat. Methods 10, 1209–1210 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cromm, P. M. & Crews, C. M. Targeted protein degradation: from chemical biology to drug discovery. Cell Chem. Biol. 24, 1181–1190 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Burslem, G. M. & Crews, C. M. Small-molecule modulation of protein homeostasis. Chem. Rev. 117, 11269–11301 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kanwal, C., Mu, S., Kern, S. E. & Lim, C. S. Bidirectional on/off switch for controlled targeting of proteins to subcellular compartments. J. Control. Release 98, 379–393 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dixon, A. S., Constance, J. E., Tanaka, T., Rabbitts, T. H. & Lim, C. S. Changing the subcellular location of the oncoprotein Bcr-Abl using rationally designed capture motifs. Pharm. Res. 29, 1098–1109 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Niopek, D. et al. Engineering light-inducible nuclear localization signals for precise spatiotemporal control of protein dynamics in living cells. Nat. Commun. 5, 4404 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yumerefendi, H. et al. Light-induced nuclear export reveals rapid dynamics of epigenetic modifications. Nat. Chem. Biol. 12, 399–401 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jayanthi, B., Bachhav, B., Wan, Z., Martinez Legaspi, S. & Segatori, L. A platform for post-translational spatiotemporal control of cellular proteins. Synth. Biol. (Oxf.) 6, ysab002 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Klemm, J. D., Beals, C. R. & Crabtree, G. R. Rapid targeting of nuclear proteins to the cytoplasm. Curr. Biol. 7, 638–644 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Geda, P. et al. A small molecule-directed approach to control protein localization and function. Yeast 25, 577–594 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Raschbichler, V., Lieber, D. & Bailer, S. M. NEX-TRAP, a novel method for in vivo analysis of nuclear export of proteins. Traffic 13, 1326–1334 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Robinson, M. S., Sahlender, D. A. & Foster, S. D. Rapid inactivation of proteins by rapamycin-induced rerouting to mitochondria. Dev. Cell 18, 324–331 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ishida, M. et al. Synthetic self-localizing ligands that control the spatial location of proteins in living cells. J. Am. Chem. Soc. 135, 12684–12689 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nakamura, A. et al. Chemogenetic control of protein anchoring to endomembranes in living cells with lipid-tethered small molecules. Biochemistry 59, 205–211 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wing, C. E., Fung, H. Y. J. & Chook, Y. M. Karyopherin-mediated nucleocytoplasmic transport. Nat. Rev. Mol. Cell Biol. 23, 307–328 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Love, D. C., Sweitzer, T. D. & Hanover, J. A. Reconstitution of HIV-1 Rev nuclear export: independent requirements for nuclear import and export. Proc. Natl Acad. Sci. USA 95, 10608–10613 (1998).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gibson, T. J., Seiler, M. & Veitia, R. A. The transience of transient overexpression. Nat. Methods 10, 715–721 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gourisankar, S. et al. Rewiring cancer drivers to activate apoptosis. Nature 620, 417–425 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Højfeldt, J. W. et al. Bifunctional ligands allow deliberate extrinsic reprogramming of the glucocorticoid receptor. Mol. Endocrinol. 28, 249–259 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gallagher, S. S., Miller, L. W. & Cornish, V. W. An orthogonal dexamethasone–trimethoprim yeast three-hybrid system. Anal. Biochem. 363, 160–162 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gazorpak, M. et al. Harnessing PROTAC technology to combat stress hormone receptor activation. Nat. Commun. 14, 8177 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pathak, R. et al. Inhibition of nuclear export restores nuclear localization and residual tumor suppressor function of truncated SMARCB1/INI1 protein in a molecular subset of atypical teratoid/rhabdoid tumors. Acta Neuropathol. 142, 361–374 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Boer, E. M. J. et al. TDP-43 proteinopathies: a new wave of neurodegenerative diseases. J. Neurol. Neurosurg. Psychiatry 92, 86–95 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Dormann, D. et al. ALS-associated fused in sarcoma (FUS) mutations disrupt Transportin-mediated nuclear import. EMBO J. 29, 2841–2857 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Waibel, S., Neumann, M., Rabe, M., Meyer, T. & Ludolph, A. C. Novel missense and truncating mutations in FUS/TLS in familial ALS. Neurology 75, 815–817 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bosco, D. A. et al. Mutant FUS proteins that cause amyotrophic lateral sclerosis incorporate into stress granules. Hum. Mol. Genet. 19, 4160–4175 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cho, N. H. et al. OpenCell: endogenous tagging for the cartography of human cellular organization. Science 375, eabi6983 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dong, H. et al. Targeting PRMT9-mediated arginine methylation suppresses cancer stem cell maintenance and elicits cGAS-mediated anticancer immunity. Nat. Cancer 5, 601–624 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Coleman, M. P. & Freeman, M. R. Wallerian degeneration, WldS, and Nmnat. Annu. Rev. Neurosci. 33, 245–267 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Conforti, L. et al. Wld S protein requires Nmnat activity and a short N-terminal sequence to protect axons in mice. J. Cell Biol. 184, 491–500 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Babetto, E. et al. Targeting NMNAT1 to axons and synapses transforms its neuroprotective potency in vivo. J. Neurosci. 30, 13291–13304 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fischer, L. R. et al. The WldS gene modestly prolongs survival in the SOD1G93A fALS mouse. Neurobiol. Dis. 19, 293–300 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, M. S. et al. The WldS protein protects against axonal degeneration: a model of gene therapy for peripheral neuropathy. Ann. Neurol. 50, 773–779 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, J. T., Medress, Z. A., Vargas, M. E. & Barres, B. A. Local axonal protection by WldS as revealed by conditional regulation of protein stability. Proc. Natl Acad. Sci. USA 112, 10093–10100 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Henderson, B. R. & Eleftheriou, A. A comparison of the activity, sequence specificity, and CRM1-dependence of different nuclear export signals. Exp. Cell. Res. 256, 213–224 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cao, C. et al. Discovery of SK-575 as a highly potent and efficacious proteolysis-targeting chimera degrader of PARP1 for treating cancers. J. Med. Chem. 63, 11012–11033 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, G.-C. et al. Design, synthesis and evaluation of a cellular stable and detectable biotinylated fumagillin probe and investigation of cell permeability of fumagillin and its analogs to endothelial and cancer cells. Eur. J. Med. Chem. 70, 631–639 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hughes, R. O. et al. Small molecule SARM1 inhibitors recapitulate the SARM1−/− phenotype and allow recovery of a metastable pool of axons fated to degenerate. Cell Rep. 34, 108588 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feldman, H. C. et al. Selective inhibitors of SARM1 targeting an allosteric cysteine in the autoregulatory ARM domain. Proc. Natl Acad. Sci. USA 119, e2208457119 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sakuma, T., Nakade, S., Sakane, Y., Suzuki, K.-I. T. & Yamamoto, T. MMEJ-assisted gene knock-in using TALENs and CRISPR–Cas9 with the PITCh systems. Nat. Protoc. 11, 118–133 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sasaki, Y., Vohra, B. P. S., Lund, F. E. & Milbrandt, J. Nicotinamide mononucleotide adenylyl transferase-mediated axonal protection requires enzymatic activity but not increased levels of neuronal nicotinamide adenine dinucleotide. J. Neurosci. 29, 5525–5535 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gerdts, J., Sasaki, Y., Vohra, B., Marasa, J. & Milbrandt, J. Image-based screening identifies novel roles for IκB kinase and glycogen synthase kinase 3 in axonal degeneration. J. Biol. Chem. 286, 28011–28018 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments