Thursday, June 19, 2025
No menu items!
HomeNatureSystems consolidation reorganizes hippocampal engram circuitry

Systems consolidation reorganizes hippocampal engram circuitry

  • McClelland, J. L., McNaughton, B. L. & O’Reilly, R. C. Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. Psychol. Rev. 102, 419 (1995).

    Article 
    PubMed 

    Google Scholar
     

  • Shepard, R. N. Toward a universal law of generalization for psychological science. Science 237, 1317–1323 (1987).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Richards, B. A. & Frankland, P. W. The persistence and transience of memory. Neuron 94, 1071–1084 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nadel, L. & Moscovitch, M. Memory consolidation, retrograde amnesia and the hippocampal complex. Curr. Opin. Neurobiol. 7, 217–227 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tulving, E. Episodic memory: from mind to brain. Annu. Rev. Psychol. 53, 1–25 (2002).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Winocur, G. & Moscovitch, M. Memory transformation and systems consolidation. J. Int. Neuropsychol. Soc. 17, 766–780 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Moscovitch, M., Cabeza, R., Winocur, G. & Nadel, L. Episodic memory and beyond: the hippocampus and neocortex in transformation. Annu. Rev. Psychol. 67, 105–134 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tonegawa, S., Morrissey, M. D. & Kitamura, T. The role of engram cells in the systems consolidation of memory. Nat. Rev. Neurosci. 19, 485–498 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barry, D. N. & Maguire, E. A. Remote memory and the hippocampus: a constructive critique. Trends Cogn. Sci. 23, 128–142 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Gilboa, A. & Moscovitch, M. No consolidation without representation: correspondence between neural and psychological representations in recent and remote memory. Neuron 109, 2239–2255 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Buckner, R. L. The role of the hippocampus in prediction and imagination. Annu. Review Psychol. 61, 27–48 (2010).

    Article 

    Google Scholar
     

  • Brown, T. I. et al. Prospective representation of navigational goals in the human hippocampus. Science 352, 1323–1326 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Garvert, M. M., Saanum, T., Schulz, E., Schuck, N. W. & Doeller, C. F. Hippocampal spatio-predictive cognitive maps adaptively guide reward generalization. Nat. Neurosci. 26, 615–626 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Courellis, H. S. et al. Abstract representations emerge in human hippocampal neurons during inference. Nature 632, 841–849 (2024).

  • Hassabis, D., Kumaran, D., Vann, S. D. & Maguire, E. A. Patients with hippocampal amnesia cannot imagine new experiences. Proc. Natl Acad. Sci. USA 104, 1726–1731 (2007).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hassabis, D. & Maguire, E. A. Deconstructing episodic memory with construction. Trends Cogn. Sci. 11, 299–306 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Spens, E. & Burgess, N. A generative model of memory construction and consolidation. Nat. Hum. Behav. 8, 526–543 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Allen, T. A. & Fortin, N. J. The evolution of episodic memory. Proc. Natl Acad. Sci. USA 110, 10379–10386 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Winocur, G., Moscovitch, M. & Sekeres, M. Memory consolidation or transformation: context manipulation and hippocampal representations of memory. Nat. Neurosci. 10, 555–557 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wiltgen, B. J. & Silva, A. J. Memory for context becomes less specific with time. Learn. Mem. 14, 313–317 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • DeNardo, L. A. et al. Temporal evolution of cortical ensembles promoting remote memory retrieval. Nat. Neurosci. 22, 460–469 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kitamura, T. et al. Engrams and circuits crucial for systems consolidation of a memory. Science 356, 73–78 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guskjolen, A. et al. Recovery of “lost” infant memories in mice. Curr. Biol. 28, 2283–2290 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Broussard, G. J. et al. In vivo measurement of afferent activity with axon-specific calcium imaging. Nat. Neurosci. 21, 1272–1280 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mocle, A. J. et al. Excitability mediates allocation of pre-configured ensembles to a hippocampal engram supporting contextual conditioned threat in mice. Neuron 112, 1487–1497 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mahn, M. et al. Efficient optogenetic silencing of neurotransmitter release with a mosquito rhodopsin. Neuron 109, 1621–1635 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tse, D. et al. Schemas and memory consolidation. Science 316, 76–82 (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Tse, D. et al. Schema-dependent gene activation and memory encoding in neocortex. Science 333, 891–895 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Atucha, E., Ku, S.-P., Lippert, M. T. & Sauvage, M. M. Recalling gist memory depends on CA1 hippocampal neurons for lifetime retention and CA3 neurons for memory precision. Cell Rep. 42, 113317 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Choi, J.-H. et al. Interregional synaptic maps among engram cells underlie memory formation. Science 360, 430–435 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ruediger, S. et al. Learning-related feedforward inhibitory connectivity growth required for memory precision. Nature 473, 514–518 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Guo, N. et al. Dentate granule cell recruitment of feedforward inhibition governs engram maintenance and remote memory generalization. Nat. Med. 24, 438–449 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chklovskii, D. B., Mel, B. & Svoboda, K. Cortical rewiring and information storage. Nature 431, 782–788 (2004).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Govindarajan, A., Kelleher, R. J. & Tonegawa, S. A clustered plasticity model of long-term memory engrams. Nat. Rev. Neurosci. 7, 575–583 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, C. & Kaang, B.-K. Clustering of synaptic engram: functional and structural basis of memory. Neurobiol. Learn. Mem. 216, 107993 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Kitamura, T. et al. Adult neurogenesis modulates the hippocampus-dependent period of associative fear memory. Cell 139, 814–827 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, C., Teng, E. M., Summers, R. G., Ming, G.-l & Gage, F. H. Distinct morphological stages of dentate granule neuron maturation in the adult mouse hippocampus. J. Neurosci. 26, 3–11 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Toni, N. et al. Synapse formation on neurons born in the adult hippocampus. Nat. Neurosci. 10, 727–734 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ge, S., Yang, C.-h, Hsu, K.-s, Ming, G.-l & Song, H. A critical period for enhanced synaptic plasticity in newly generated neurons of the adult brain. Neuron 54, 559–566 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marín-Burgin, A., Mongiat, L. A., Pardi, M. B. & Schinder, A. F. Unique processing during a period of high excitation/inhibition balance in adult-born neurons. Science 335, 1238–1242 (2012).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gu, Y. et al. Optical controlling reveals time-dependent roles for adult-born dentate granule cells. Nat. Neurosci. 15, 1700–1706 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Denoth-Lippuner, A. & Jessberger, S. Formation and integration of new neurons in the adult hippocampus. Nat. Rev. Neurosci. 22, 223–236 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Toni, N. et al. Neurons born in the adult dentate gyrus form functional synapses with target cells. Nat. Neurosci. 11, 901–907 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Monje, M. L., Mizumatsu, S., Fike, J. R. & Palmer, T. D. Irradiation induces neural precursor-cell dysfunction. Nat. Med. 8, 955–962 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Van Praag, H., Kempermann, G. & Gage, F. H. Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat. Neurosci. 2, 266–270 (1999).

    Article 
    PubMed 

    Google Scholar
     

  • Guskjolen, A. et al. Neurogenesis-mediated circuit remodeling reduces engram reinstatement and promotes forgetting. Preprint at bioRxiv https://doi.org/10.1101/2023.10.10.561722 (2023).

  • Williams, M. E. et al. Cadherin-9 regulates synapse-specific differentiation in the developing hippocampus. Neuron 71, 640–655 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Frankland, P. W. & Bontempi, B. The organization of recent and remote memories. Nat. Rev. Neurosci. 6, 119–130 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Squire, L. R. & Alvarez, P. Retrograde amnesia and memory consolidation: a neurobiological perspective. Curr. Opin. Neurobiol. 5, 169–177 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ko, S. Y. & Frankland, P. W. Neurogenesis-dependent transformation of hippocampal engrams. Neurosci. Lett. 762, 136176 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Akers, K. G. et al. Hippocampal neurogenesis regulates forgetting during adulthood and infancy. Science 344, 598–602 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ziv, Y. et al. Long-term dynamics of CA1 hippocampal place codes. Nat. Neurosci. 16, 264–266 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miller, A. M. et al. Emergence of a predictive model in the hippocampus. Neuron 111, 1952–1965 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hindy, N. C., Ng, F. Y. & Turk-Browne, N. B. Linking pattern completion in the hippocampus to predictive coding in visual cortex. Nat. Neurosci. 19, 665–667 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barron, H. C., Auksztulewicz, R. & Friston, K. Prediction and memory: a predictive coding account. Prog. Neurobiol. 192, 101821 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kumar, D. et al. Sparse activity of hippocampal adult-born neurons during REM sleep is necessary for memory consolidation. Neuron 107, 552–565 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Josselyn, S. A. & Tonegawa, S. Memory engrams: recalling the past and imagining the future. Science 367, eaaw4325 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sahay, A. et al. Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation. Nature 472, 466–470 (2011).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kumaran, D. & McClelland, J. L. Generalization through the recurrent interaction of episodic memories: a model of the hippocampal system. Psychol. Rev. 119, 573 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Van Kesteren, M. T. et al. Differential roles for medial prefrontal and medial temporal cortices in schema-dependent encoding: from congruent to incongruent. Neuropsychologia 51, 2352–2359 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Lei, B. et al. Reconstructing a new hippocampal engram for systems reconsolidation and remote memory updating. Neuron 113, 471–485 (2024).

  • Imayoshi, I., Ohtsuka, T., Metzger, D., Chambon, P. & Kageyama, R. Temporal regulation of Cre recombinase activity in neural stem cells. Genesis 44, 233–238 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Imayoshi, I. et al. Roles of continuous neurogenesis in the structural and functional integrity of the adult forebrain. Nat. Neurosci. 11, 1153–1161 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun, M. Y., Yetman, M. J., Lee, T. C., Chen, Y. & Jankowsky, J. L. Specificity and efficiency of reporter expression in adult neural progenitors vary substantially among nestin‐CreERT2 lines. J. Comp. Neurol. 522, 1191–1208 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Duan, Y. et al. Semaphorin 5 A inhibits synaptogenesis in early postnatal-and adult-born hippocampal dentate granule cells. eLife 3, e04390 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, S.-H., Teixeira, C. M., Wheeler, A. L. & Frankland, P. W. The precision of remote context memories does not require the hippocampus. Nat. Neurosci. 12, 253–255 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Kee, N., Teixeira, C. M., Wang, A. H. & Frankland, P. W. Preferential incorporation of adult-generated granule cells into spatial memory networks in the dentate gyrus. Nat. Neurosci. 10, 355–362 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maei, H. R., Zaslavsky, K., Teixeira, C. M. & Frankland, P. W. What is the most sensitive measure of water maze probe test performance? Front. Integr. Neurosci. 3, 493 (2009).

    Article 

    Google Scholar
     

  • Maei, H. R. et al. Development and validation of a sensitive entropy-based measure for the water maze. Front. Integr. Neurosci. 3, 870 (2009).

    Article 

    Google Scholar
     

  • Richards, B. A. et al. Patterns across multiple memories are identified over time. Nat. Neurosci. 17, 981–986 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Berndt, A. et al. Structural foundations of optogenetics: determinants of channelrhodopsin ion selectivity. Proc. Natl Acad. Sci. USA 113, 822–829 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Tashiro, A., Zhao, C. & Gage, F. H. Retrovirus-mediated single-cell gene knockout technique in adult newborn neurons in vivo. Nat. Protoc. 1, 3049–3055 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Paxinos, G. & Franklin, K. B. Paxinos and Franklin’s the Mouse Brain in Stereotaxic Coordinates (Academic, 2019).

  • Guenthner, C. J., Miyamichi, K., Yang, H. H., Heller, H. C. & Luo, L. Permanent genetic access to transiently active neurons via TRAP: targeted recombination in active populations. Neuron 78, 773–784 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mathis, A. et al. DeepLabCut: markerless pose estimation of user-defined body parts with deep learning. Nat. Neurosci. 21, 1281–1289 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sherathiya, V. N., Schaid, M. D., Seiler, J. L., Lopez, G. C. & Lerner, T. N. GuPPy, a Python toolbox for the analysis of fiber photometry data. Sci. Rep. 11, 24212 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, J. et al. mGRASP enables mapping mammalian synaptic connectivity with light microscopy. Nat. Methods 9, 96–102 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Druckmann, S. et al. Structured synaptic connectivity between hippocampal regions. Neuron 81, 629–640 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chehrehasa, F., Meedeniya, A. C., Dwyer, P., Abrahamsen, G. & Mackay-Sim, A. EdU, a new thymidine analogue for labelling proliferating cells in the nervous system. J. Neurosci. Methods 177, 122–130 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zeng, C. et al. Evaluation of 5-ethynyl-2′-deoxyuridine staining as a sensitive and reliable method for studying cell proliferation in the adult nervous system. Brain Res. 1319, 21–32 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Fujikawa, R. et al. Neurogenesis-dependent remodeling of hippocampal circuits reduces PTSD-like behaviors in adult mice. Mol. Psychiatry 29, 3316–3329 (2024).

  • Lagace, D. C. et al. Dynamic contribution of nestin-expressing stem cells to adult neurogenesis. J. Neurosci. 27, 12623–12629 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arruda-Carvalho, M., Sakaguchi, M., Akers, K. G., Josselyn, S. A. & Frankland, P. W. Posttraining ablation of adult-generated neurons degrades previously acquired memories. J. Neurosci. 31, 15113–15127 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ramsaran, A. I. et al. A shift in the mechanisms controlling hippocampal engram formation during brain maturation. Science 380, 543–551 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ko, S. et al. Systems consolidation reorganizes hippocampal engram circuitry – source data. Zenodo https://doi.org/10.5281/zenodo.14713972 (2025).

  • RELATED ARTICLES

    Most Popular

    Recent Comments