Friday, November 14, 2025
No menu items!
HomeNatureSynthesis of enantioenriched atropisomers by biocatalytic deracemization

Synthesis of enantioenriched atropisomers by biocatalytic deracemization

  • McVicker, R. U. & O’Boyle, N. M. Chirality of new drug approvals (2013–2022): trends and perspectives. J. Med. Chem. 67, 2305–2320 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Laplante, S. R. et al. Assessing atropisomer axial chirality in drug discovery and development. J. Med. Chem. 54, 7005–7022 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Loyola, A. C. et al. Streptonigrin at low concentration promotes heterochromatin formation. Sci. Rep. 10, 3478 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Basilaia, M., Chen, M. H., Secka, J. & Gustafson, J. L. Atropisomerism in the pharmaceutically relevant realm. Acc. Chem. Res. 55, 2904–2919 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheng, J. K., Xiang, S. H., Li, S., Ye, L. & Tan, B. Recent advances in catalytic asymmetric construction of atropisomers. Chem. Rev. 121, 4805–4902 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Carlsson, A.-C. C., Karlsson, S., Munday, R. H. & Tatton, M. R. Approaches to synthesis and isolation of enantiomerically pure biologically active atropisomers. Acc. Chem. Res. 55, 2938–2948 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Keith, J. M., Larrow, J. F. & Jacobsen, E. N. Practical considerations in kinetic resolution reactions. Adv. Synth. Catal. 343, 5–26 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Bhat, V., Welin, E. R., Guo, X. & Stoltz, B. M. Advances in stereoconvergent catalysis from 2005 to 2015: transition-metal-mediated stereoablative reactions, dynamic kinetic resolutions, and dynamic kinetic asymmetric transformations. Chem. Rev. 117, 4528–4561 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Faber, K. Non-sequential processes for the transformation of a racemate into a single stereoisomeric product: proposal for stereochemical classification. Chem. Eur. J. 7, 5004–5010 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kitamura, M., Tokunaga, M. & Noyori, R. Mathematical treatment of kinetic resolution of chirally labile substrates. Tetrahedron 49, 1853–1860 (1993).

    Article 
    CAS 

    Google Scholar
     

  • Roos, C. B. et al. Stereodynamic strategies to induce and enrich chirality of atropisomers at a late stage. Chem. Rev. 123, 10641–10727 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mondal, A., Toyoda, R., Costil, R. & Feringa, B. L. Chemically driven rotatory molecular machines. Angew. Chem. Int. Ed. 61, e202206631 (2022).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Zhang, Y. et al. Highly enantioselective deracemization of linear and vaulted biaryl ligands. Org. Lett. 5, 1813–1816 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, J., Wang, K. & Zhu, C. Deracemization of atropisomeric biaryls enabled by copper catalysis. JACS Au 4, 502–511 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zetzsche, L. E. et al. Biocatalytic oxidative cross-coupling reactions for biaryl bond formation. Nature 603, 79–85 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Brunel, J. M. BINOL: a versatile chiral reagent. Chem. Rev. 105, 857–898 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, B. et al. Binding of two flaviolin substrate molecules, oxidative coupling, and crystal structure of Streptomyces coelicolor A3(2) cytochrome P450 158A2. J. Biol. Chem. 280, 11599–11607 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Narute, S., Parnes, R., Toste, F. D. & Pappo, D. Enantioselective oxidative homocoupling and cross-coupling of 2-naphthols catalyzed by chiral iron phosphate complexes. J. Am. Chem. Soc. 138, 16553–16560 (2016).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Huang, M., Pan, T., Jiang, X. & Luo, S. Catalytic deracemization reactions. J. Am. Chem. Soc. 145, 10917–10929 (2023).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Gruber, C. C., Lavandera, I., Faber, K. & Kroutil, W. From a racemate to a single enantiomer: deracemization by stereoinversion. Adv. Synth. Catal. 348, 1789–1805 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Wang, J., Lv, X. & Jiang, Z. Visible-light-mediated photocatalytic deracemization. Chem. Eur. J. 29, e202204029 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Buhse, T. et al. Spontaneous deracemizations. Chem. Rev. 121, 2147–2229 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Smrdina, M., Poláková, J., Vyskocil, S. & Koóovsk, P. Synthesis of enantiomerically pure binaphthyl derivatives. Mechanism of the enantioselective, oxidative coupling of naphthols and designing a catalytic cycle. J. Org. Chem. 58, 4534–4538 (1993).

    Article 

    Google Scholar
     

  • Mulrooney, C. A., Li, X., DiVirgilio, E. S. & Kozlowski, M. C. General approach for the synthesis of chiral perylenequinones via catalytic enantioselective oxidative biaryl coupling. J. Am. Chem. Soc. 125, 6856–6857 (2003).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Shalit, H., Libman, A. & Pappo, D. meso-tetraphenylporphyrin iron chloride catalyzed selective oxidative cross-coupling of phenols. J. Am. Chem. Soc. 139, 13404–13413 (2017).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Moustafa, G. A. I., Oki, Y. & Akai, S. Lipase-catalyzed dynamic kinetic resolution of C1- and C2-symmetric racemic axially chiral 2,2′-dihydroxy-1,1′-biaryls. Angew. Chem. Int. Ed. 57, 10278–10282 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Tan, J. S. J. & Paton, R. S. Frontier molecular orbital effects control the hole-catalyzed racemization of atropisomeric biaryls. Chem. Sci. 10, 2285–2289 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, X. & Li, S. Expansion of chemical space for natural products by uncommon P450 reactions. Nat. Prod. Rep. 34, 1061–1089 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dornevil, K. et al. Cross-linking of dicyclotyrosine by the cytochrome P450 enzyme CYP121 from Mycobacterium tuberculosis proceeds through a catalytic shunt pathway. J. Biol. Chem. 292, 13645–13657 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gering, H. E. et al. A ferric-superoxide intermediate initiates P450-catalyzed cyclic dipeptide dimerization. J. Am. Chem. Soc. 145, 19256–19264 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Huang, X. & Groves, J. T. Oxygen activation and radical transformations in heme proteins and metalloporphyrins. Chem. Rev. 118, 2491–2553 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Renata, H. Engineering catalytically self-sufficient P450s. Biochemistry 62, 253–261 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wong, C.-H. & Whitesides, G. M. Enzyme-catalyzed organic synthesis: NAD(P)H cofactor regeneration by using glucose-6-phosphate and the glucose-5-phosphate dehydrogenase from Leuconostoc mesenteroides. J. Am. Chem. Soc. 103, 4890–4899 (1981).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • van Rantwijk, F. & Sheldon, R. A. Selective oxygen transfer catalysed by heme peroxidases: synthetic and mechanistic aspects. Curr. Opin. Biotechnol. 11, 554–564 (2000).

    Article 
    PubMed 

    Google Scholar
     

  • Grinstead, R. The oxidation of ascorbic acid by hydrogen peroxide. Catalysis by ethylenediaminetetraacetato-iron(III). J. Am. Chem. Soc. 82, 3464–3471 (1960).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Shen, J. et al. Ascorbate oxidation by iron, copper and reactive oxygen species: review, model development, and derivation of key rate constants. Sci. Rep. 11, 7417 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Neta, P. & Grodkowski, J. Rate constants for reactions of phenoxyl radicals in solution. J. Phys. Chem. Ref. Data 34, 109–199 (2005).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Schuler, R. H. Oxidation of ascorbate anion by electron transfer to phenoxyl radicals. Radiat. Res. 69, 417–433 (1977).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Mayer, J. M., Hrovat, D. A., Thomas, J. L. & Borden, W. T. Proton-coupled electron transfer versus hydrogen atom transfer in benzyl/toluene, methoxyl/methanol, and phenoxyl/phenol self-exchange reactions. J. Am. Chem. Soc. 124, 11142–11147 (2002).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Giulivi, C. & Cadenas, E. The reaction of ascorbic acid with different heme iron redox states of myoglobin: antioxidant and prooxidant aspects. FEBS Lett. 332, 287–290 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Albertolle, M. E. & Peter Guengerich, F. The relationships between cytochromes P450 and H2O2: production, reaction, and inhibition. J. Inorg. Biochem. 186, 228–234 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, Y., Yekta, S. & Yudin, A. K. Modified BINOL ligands in asymmetric catalysis. Chem. Rev. 103, 3155–3211 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Parmar, D., Sugiono, E., Raja, S. & Rueping, M. Complete field guide to asymmetric BINOL-phosphate derived Brønsted acid and metal catalysis: history and classification by mode of activation; Brønsted acidity, hydrogen bonding, ion pairing, and metal phosphates. Chem. Rev. 114, 9047–9153 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, X. et al. Chiral BINOL-based covalent organic frameworks for enantioselective sensing. J. Am. Chem. Soc. 141, 7081–7089 (2019).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Kočovský, P., Vyskočil, Š & Smrčina, M. Non-symmetrically substituted 1,1′-binaphthyls in enantioselective catalysis. Chem. Rev. 103, 3213–3245 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Wu, J. & Kozlowski, M. C. Catalytic oxidative coupling of phenols and related compounds. ACS Catal. 12, 6532–6549 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mazzaferro, L. S., Hüttel, W., Fries, A. & Müller, M. Cytochrome P450-catalyzed regio- and stereoselective phenol coupling of fungal natural products. J. Am. Chem. Soc. 137, 12289–12295 (2015).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments