McVicker, R. U. & O’Boyle, N. M. Chirality of new drug approvals (2013–2022): trends and perspectives. J. Med. Chem. 67, 2305–2320 (2024).
Laplante, S. R. et al. Assessing atropisomer axial chirality in drug discovery and development. J. Med. Chem. 54, 7005–7022 (2011).
Loyola, A. C. et al. Streptonigrin at low concentration promotes heterochromatin formation. Sci. Rep. 10, 3478 (2020).
Basilaia, M., Chen, M. H., Secka, J. & Gustafson, J. L. Atropisomerism in the pharmaceutically relevant realm. Acc. Chem. Res. 55, 2904–2919 (2022).
Cheng, J. K., Xiang, S. H., Li, S., Ye, L. & Tan, B. Recent advances in catalytic asymmetric construction of atropisomers. Chem. Rev. 121, 4805–4902 (2021).
Carlsson, A.-C. C., Karlsson, S., Munday, R. H. & Tatton, M. R. Approaches to synthesis and isolation of enantiomerically pure biologically active atropisomers. Acc. Chem. Res. 55, 2938–2948 (2022).
Keith, J. M., Larrow, J. F. & Jacobsen, E. N. Practical considerations in kinetic resolution reactions. Adv. Synth. Catal. 343, 5–26 (2001).
Bhat, V., Welin, E. R., Guo, X. & Stoltz, B. M. Advances in stereoconvergent catalysis from 2005 to 2015: transition-metal-mediated stereoablative reactions, dynamic kinetic resolutions, and dynamic kinetic asymmetric transformations. Chem. Rev. 117, 4528–4561 (2017).
Faber, K. Non-sequential processes for the transformation of a racemate into a single stereoisomeric product: proposal for stereochemical classification. Chem. Eur. J. 7, 5004–5010 (2001).
Kitamura, M., Tokunaga, M. & Noyori, R. Mathematical treatment of kinetic resolution of chirally labile substrates. Tetrahedron 49, 1853–1860 (1993).
Roos, C. B. et al. Stereodynamic strategies to induce and enrich chirality of atropisomers at a late stage. Chem. Rev. 123, 10641–10727 (2023).
Mondal, A., Toyoda, R., Costil, R. & Feringa, B. L. Chemically driven rotatory molecular machines. Angew. Chem. Int. Ed. 61, e202206631 (2022).
Zhang, Y. et al. Highly enantioselective deracemization of linear and vaulted biaryl ligands. Org. Lett. 5, 1813–1816 (2003).
Zhang, J., Wang, K. & Zhu, C. Deracemization of atropisomeric biaryls enabled by copper catalysis. JACS Au 4, 502–511 (2024).
Zetzsche, L. E. et al. Biocatalytic oxidative cross-coupling reactions for biaryl bond formation. Nature 603, 79–85 (2022).
Brunel, J. M. BINOL: a versatile chiral reagent. Chem. Rev. 105, 857–898 (2005).
Zhao, B. et al. Binding of two flaviolin substrate molecules, oxidative coupling, and crystal structure of Streptomyces coelicolor A3(2) cytochrome P450 158A2. J. Biol. Chem. 280, 11599–11607 (2005).
Narute, S., Parnes, R., Toste, F. D. & Pappo, D. Enantioselective oxidative homocoupling and cross-coupling of 2-naphthols catalyzed by chiral iron phosphate complexes. J. Am. Chem. Soc. 138, 16553–16560 (2016).
Huang, M., Pan, T., Jiang, X. & Luo, S. Catalytic deracemization reactions. J. Am. Chem. Soc. 145, 10917–10929 (2023).
Gruber, C. C., Lavandera, I., Faber, K. & Kroutil, W. From a racemate to a single enantiomer: deracemization by stereoinversion. Adv. Synth. Catal. 348, 1789–1805 (2006).
Wang, J., Lv, X. & Jiang, Z. Visible-light-mediated photocatalytic deracemization. Chem. Eur. J. 29, e202204029 (2023).
Buhse, T. et al. Spontaneous deracemizations. Chem. Rev. 121, 2147–2229 (2021).
Smrdina, M., Poláková, J., Vyskocil, S. & Koóovsk, P. Synthesis of enantiomerically pure binaphthyl derivatives. Mechanism of the enantioselective, oxidative coupling of naphthols and designing a catalytic cycle. J. Org. Chem. 58, 4534–4538 (1993).
Mulrooney, C. A., Li, X., DiVirgilio, E. S. & Kozlowski, M. C. General approach for the synthesis of chiral perylenequinones via catalytic enantioselective oxidative biaryl coupling. J. Am. Chem. Soc. 125, 6856–6857 (2003).
Shalit, H., Libman, A. & Pappo, D. meso-tetraphenylporphyrin iron chloride catalyzed selective oxidative cross-coupling of phenols. J. Am. Chem. Soc. 139, 13404–13413 (2017).
Moustafa, G. A. I., Oki, Y. & Akai, S. Lipase-catalyzed dynamic kinetic resolution of C1- and C2-symmetric racemic axially chiral 2,2′-dihydroxy-1,1′-biaryls. Angew. Chem. Int. Ed. 57, 10278–10282 (2018).
Tan, J. S. J. & Paton, R. S. Frontier molecular orbital effects control the hole-catalyzed racemization of atropisomeric biaryls. Chem. Sci. 10, 2285–2289 (2019).
Zhang, X. & Li, S. Expansion of chemical space for natural products by uncommon P450 reactions. Nat. Prod. Rep. 34, 1061–1089 (2017).
Dornevil, K. et al. Cross-linking of dicyclotyrosine by the cytochrome P450 enzyme CYP121 from Mycobacterium tuberculosis proceeds through a catalytic shunt pathway. J. Biol. Chem. 292, 13645–13657 (2017).
Gering, H. E. et al. A ferric-superoxide intermediate initiates P450-catalyzed cyclic dipeptide dimerization. J. Am. Chem. Soc. 145, 19256–19264 (2023).
Huang, X. & Groves, J. T. Oxygen activation and radical transformations in heme proteins and metalloporphyrins. Chem. Rev. 118, 2491–2553 (2018).
Renata, H. Engineering catalytically self-sufficient P450s. Biochemistry 62, 253–261 (2023).
Wong, C.-H. & Whitesides, G. M. Enzyme-catalyzed organic synthesis: NAD(P)H cofactor regeneration by using glucose-6-phosphate and the glucose-5-phosphate dehydrogenase from Leuconostoc mesenteroides. J. Am. Chem. Soc. 103, 4890–4899 (1981).
van Rantwijk, F. & Sheldon, R. A. Selective oxygen transfer catalysed by heme peroxidases: synthetic and mechanistic aspects. Curr. Opin. Biotechnol. 11, 554–564 (2000).
Grinstead, R. The oxidation of ascorbic acid by hydrogen peroxide. Catalysis by ethylenediaminetetraacetato-iron(III). J. Am. Chem. Soc. 82, 3464–3471 (1960).
Shen, J. et al. Ascorbate oxidation by iron, copper and reactive oxygen species: review, model development, and derivation of key rate constants. Sci. Rep. 11, 7417 (2021).
Neta, P. & Grodkowski, J. Rate constants for reactions of phenoxyl radicals in solution. J. Phys. Chem. Ref. Data 34, 109–199 (2005).
Schuler, R. H. Oxidation of ascorbate anion by electron transfer to phenoxyl radicals. Radiat. Res. 69, 417–433 (1977).
Mayer, J. M., Hrovat, D. A., Thomas, J. L. & Borden, W. T. Proton-coupled electron transfer versus hydrogen atom transfer in benzyl/toluene, methoxyl/methanol, and phenoxyl/phenol self-exchange reactions. J. Am. Chem. Soc. 124, 11142–11147 (2002).
Giulivi, C. & Cadenas, E. The reaction of ascorbic acid with different heme iron redox states of myoglobin: antioxidant and prooxidant aspects. FEBS Lett. 332, 287–290 (1993).
Albertolle, M. E. & Peter Guengerich, F. The relationships between cytochromes P450 and H2O2: production, reaction, and inhibition. J. Inorg. Biochem. 186, 228–234 (2018).
Chen, Y., Yekta, S. & Yudin, A. K. Modified BINOL ligands in asymmetric catalysis. Chem. Rev. 103, 3155–3211 (2003).
Parmar, D., Sugiono, E., Raja, S. & Rueping, M. Complete field guide to asymmetric BINOL-phosphate derived Brønsted acid and metal catalysis: history and classification by mode of activation; Brønsted acidity, hydrogen bonding, ion pairing, and metal phosphates. Chem. Rev. 114, 9047–9153 (2014).
Wu, X. et al. Chiral BINOL-based covalent organic frameworks for enantioselective sensing. J. Am. Chem. Soc. 141, 7081–7089 (2019).
Kočovský, P., Vyskočil, Š & Smrčina, M. Non-symmetrically substituted 1,1′-binaphthyls in enantioselective catalysis. Chem. Rev. 103, 3213–3245 (2003).
Wu, J. & Kozlowski, M. C. Catalytic oxidative coupling of phenols and related compounds. ACS Catal. 12, 6532–6549 (2022).
Mazzaferro, L. S., Hüttel, W., Fries, A. & Müller, M. Cytochrome P450-catalyzed regio- and stereoselective phenol coupling of fungal natural products. J. Am. Chem. Soc. 137, 12289–12295 (2015).

