Thursday, July 31, 2025
No menu items!
HomeNatureSynthesis of bulk hexagonal diamond

Synthesis of bulk hexagonal diamond

  • Ergun, S. & Alexander, L. E. Crystalline forms of carbon: a possible hexagonal polymorph of diamond. Nature 195, 765–767 (1962).

    ADS 
    CAS 

    Google Scholar
     

  • E. I. du Pont de Nemours and Company. Netherlands Patent Release No. 6506395 (22 November 1965).

  • Hanneman, R. E., Strong, H. M. & Bundy, F. P. Hexagonal diamonds in meteorites: implications. Science 155, 995–997 (1967).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Shiell, T. B. et al. Nanocrystalline hexagonal diamond formed from glassy carbon. Sci. Rep. 6, 37232 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Prawer, S. & Greentree, A. D. Diamond for quantum computing. Science 320, 1601–1602 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • Aharonovich, I., Greentree, A. D. & Prawer, S. Diamond photonics. Nat. Photon. 5, 397–405 (2011).

    ADS 
    CAS 

    Google Scholar
     

  • Frondel, C. & Marvin, U. B. Lonsdaleite, a hexagonal polymorph of diamond. Nature 214, 587–589 (1967).

    ADS 
    CAS 

    Google Scholar
     

  • Pan, Z., Sun, H., Zhang, Y. & Chen, C. Harder than diamond: superior indentation strength of wurtzite BN and lonsdaleite. Phys. Rev. Lett. 102, 055503 (2009).

    ADS 
    PubMed 

    Google Scholar
     

  • Kraus, D. et al. Nanosecond formation of diamond and lonsdaleite by shock compression of graphite. Nat. Commun. 7, 10970 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Utsumi, W. & Yagi, T. Formation of hexagonal diamond by room temperature compression of graphite. Proc. Jpn. Acad. B 67, 159–164 (1991).

    ADS 
    CAS 

    Google Scholar
     

  • Yagi, T., Utsumi, W., Yamakata, M., Kikegawa, T. & Shimomura, O. High-pressure in situ x-ray-diffraction study of the phase transformation from graphite to hexagonal diamond at room temperature. Phys. Rev. B 46, 6031–6039 (1992).

    ADS 
    CAS 

    Google Scholar
     

  • Bundy, F. P. & Kasper, J. S. Hexagonal diamond—a new form of carbon. J. Chem. Phys. 46, 3437–3446 (1967).

    ADS 
    CAS 

    Google Scholar
     

  • Stavrou, E. et al. Detonation-induced transformation of graphite to hexagonal diamond. Phys. Rev. B 102, 104116 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Turneaure, S. J., Sharma, S. M., Volz, T. J., Winey, J. M. & Gupta, Y. M. Transformation of shock-compressed graphite to hexagonal diamond in nanoseconds. Sci. Adv. 3, eaao3561 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Volz, T. J. & Gupta, Y. M. Elastic moduli of hexagonal diamond and cubic diamond formed under shock compression. Phys. Rev. B 103, L100101 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • Baek, W. et al. Unique nanomechanical properties of diamond–lonsdaleite biphases: combined experimental and theoretical consideration of Popigai impact diamonds. Nano Lett. 19, 1570–1576 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Németh, P. et al. Lonsdaleite is faulted and twinned cubic diamond and does not exist as a discrete material. Nat. Commun. 5, 5447 (2014).

    ADS 
    PubMed 

    Google Scholar
     

  • Murri, M. et al. Quantifying hexagonal stacking in diamond. Sci. Rep. 9, 10334 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Németh, P. et al. Complex nanostructures in diamond. Nat. Mater. 19, 1126–1131 (2020).

    ADS 
    PubMed 

    Google Scholar
     

  • Luo, K. et al. Coherent interfaces govern direct transformation from graphite to diamond. Nature 607, 486–491 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luo, D. et al. Atomistic evidence of nucleation mechanism for the direct graphite-to-diamond transformation. Carbon 229, 119538 (2024).

    CAS 

    Google Scholar
     

  • Smith, D. C. & Godard, G. UV and VIS Raman spectra of natural lonsdaleites: towards a recognised standard. Spectrochim. Acta A 73, 428–435 (2009).

    ADS 

    Google Scholar
     

  • Ferrari, A., Robertson, J., Reich, S. & Thomsen, C. Raman spectroscopy of graphite. Philos. Trans. R. Soc. A 362, 2271–2288 (2004).


    Google Scholar
     

  • Cui, H.-J. et al. Diamond polytypes under high pressure: a first-principles study. Comput. Mater. Sci. 98, 129–135 (2015).

    CAS 

    Google Scholar
     

  • Flores-Livas, J. A. et al. Raman activity of sp3 carbon allotropes under pressure: a density functional theory study. Phys. Rev. B 85, 155428 (2012).

    ADS 

    Google Scholar
     

  • Kanasaki, J., Inami, E., Tanimura, K., Ohnishi, H. & Nasu, K. Formation of sp3-bonded carbon nanostructures by femtosecond laser excitation of graphite. Phys. Rev. Lett. 102, 087402 (2009).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mao, W. L. et al. Bonding changes in compressed superhard graphite. Science 302, 425–427 (2003).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, Q. et al. Nanotwinned diamond with unprecedented hardness and stability. Nature 510, 250–253 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Garvie, L. A. J., Németh, P. & Buseck, P. R. Transformation of graphite to diamond via a topotactic mechanism. Am. Mineral. 99, 531–538 (2014).

    ADS 

    Google Scholar
     

  • Németh, P. et al. Diamond-graphene composite nanostructures. Nano Lett. 20, 3611–3619 (2020).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Németh, P. et al. Diaphite-structured nanodiamonds with six- and twelve-fold symmetries. Diam. Relat. Mater. 119, 108573 (2021).


    Google Scholar
     

  • Volz, T. J., Turneaure, S. J., Sharma, S. M. & Gupta, Y. M. Role of graphite crystal structure on the shock-induced formation of cubic and hexagonal diamond. Phys. Rev. B 101, 224109 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Hrubiak, R., Sinogeikin, S., Rod, E. & Shen, G. The laser micro-machining system for diamond anvil cell experiments and general precision machining applications at the High Pressure Collaborative Access Team. Rev. Sci. Instrum. 86, 072202 (2015).

    ADS 
    PubMed 

    Google Scholar
     

  • Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    ADS 
    CAS 

    Google Scholar
     

  • Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    CAS 

    Google Scholar
     

  • Wan, L. & Egerton, R. F. Preparation and characterization of carbon nitride thin films. Thin Solid Films 279, 34–42 (1996).

    ADS 
    CAS 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments