Friday, January 9, 2026
No menu items!
HomeNatureSurface optimization governs the local design of physical networks

Surface optimization governs the local design of physical networks

  • Shapson-Coe, A. et al. A petavoxel fragment of human cerebral cortex reconstructed at nanoscale resolution. Science 384, eadk4858 (2024).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • The MICrONS Consortium. Functional connectomics spanning multiple areas of mouse visual cortex. Nature 640, 435–447 (2025).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Winding, M. et al. The connectome of an insect brain. Science 379, eadd9330 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wilson, N. M., Ortiz, A. K. & Johnson, A. B. The vascular model repository: a public resource of medical imaging data and blood flow simulation results. J. Med. Devices 7, 040923 (2013).

    Article 

    Google Scholar
     

  • Witten, E. Non-commutative geometry and string field theory. Nucl. Phys. B 268, 253–294 (1986).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Carlip, S. Quadratic differentials and closed string vertices. Phys. Lett. B 214, 187–192 (1988).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Saadi, M. & Zwiebach, B. Closed string field theory from polyhedra. Ann. Phys. 192, 213–227 (1989).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Cajal, S. R. Y., Azoulay, D. L., Swanson, N. & Swanson, L. W. Histology Of The Nervous System: Of Man And Vertebrates (Oxford Univ. Press, 1995).

  • Murray, C. D. The physiological principle of minimum work. Proc. Natl Acad. Sci. USA 12, 207–214 (1926).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Dehmamy, N., Milanlouei, S. & Barabási, A.-L. A structural transition in physical networks. Nature 563, 676–680 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Liu, Y., Dehmamy, N. & Barabási, A.-L. Isotopy and energy of physical networks. Nat. Phys. 17, 216–222 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Budd, J. M. L. et al. Neocortical axon arbors trade-off material and conduction delay conservation. PLoS Comput. Biol. 6, e1000711 (2010).

    Article 
    MathSciNet 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Markov, N. T. et al. Cortical high-density counterstream architectures. Science 342, 1238406 (2013).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Z., Zhao, M. & Yu, Q.-X. Modeling of branching structures of plants. J. Theor. Biol. 209, 383–394 (2001).

    Article 
    ADS 

    Google Scholar
     

  • Durand, M. Architecture of optimal transport networks. Phys. Rev. E 73, 016116 (2006).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Bontorin, S., Cencetti, G., Gallotti, R., Lepri, B. & De Domenico, M. Emergence of complex network topologies from flow-weighted optimization of network efficiency. Phys. Rev. X 14, 021050 (2024).

    CAS 

    Google Scholar
     

  • Banavar, J. R., Maritan, A. & Rinaldo, A. Size and form in efficient transportation networks. Nature 399, 130–132 (1999).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • D’Souza, R. M., Borgs, C., Chayes, J. T., Berger, N. & Kleinberg, R. D. Emergence of tempered preferential attachment from optimization. Proc. Natl Acad. Sci. USA 104, 6112–6117 (2007).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Latty, T. et al. Structure and formation of ant transportation networks. J. R. Soc. Interface 8, 1298–1306 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sexton, Z. A. et al. Rapid model-guided design of organ-scale synthetic vasculature for biomanufacturing. Science 388, 1198–1204 (2025).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Chklovskii, D. & Stevens, C. Wiring optimization in the brain. In Advances in Neural Information Processing Systems 12: Proc. 1999 Conference 103–107 (MIT Press, 1999).

  • Chklovskii, D. B., Schikorski, T. & Stevens, C. F. Wiring optimization in cortical circuits. Neuron 34, 341–347 (2002).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Kim, Y., Sinclair, R., Chindapol, N., Kaandorp, J. A. & Schutter, E. D. Geometric theory predicts bifurcations in minimal wiring cost trees in biology are flat. PLoS Comput. Biol. 8, e1002474 (2012).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Hwang, F. K., Richards, D. S. & Winter, P. The Steiner Tree Problem 1st edn (Elsevier, 1992).

  • Rosenthal, A. Computing the reliability of complex networks. SIAM J. Appl. Math. 32, 384–393 (1977).

    Article 
    MathSciNet 

    Google Scholar
     

  • Winter, P. Steiner problem in networks: a survey. Networks 17, 129–167 (1987).

    Article 
    MathSciNet 

    Google Scholar
     

  • Amirghasemi, M. et al. in Frontiers in Nature-Inspired Industrial Optimization 1st edn (eds Khosravy, M., Gupta, N. & Patel, N.) 33–48 (Springer, 2022).

  • Cherniak, C. Local optimization of neuron arbors. Biol. Cybern. 66, 503–510 (1992).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zamir, M. Optimality principles in arterial branching. J. Theor. Biol. 62, 227–251 (1976).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Corals – 3D digitization. https://3d.si.edu/corals.

  • Scheffer, L. K. et al. A connectome and analysis of the adult Drosophila central brain. eLife 9, e57443 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Gonzalez de Tanago, J. et al. Estimation of above-ground biomass of large tropical trees with terrestrial LiDAR. Methods Ecol. Evol. 9, 223–234 (2018).

    Article 

    Google Scholar
     

  • Pan, H., Hétroy-Wheeler, F., Charlaix, J. & Colliaux, D. ARABIDOPSIS 3D+T dataset. Zenodo https://doi.org/10.5281/zenodo.5205561 (2021).

  • Percheron, G. Quantitative analysis of dendritic branching. I. Simple formulae for the quantitative analysis of dendritic branching. Neurosci. Lett. 14, 287–293 (1979).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Percheron, G. Quantitative analysis of dendritic branching. II. Fundamental dendritic numbers as a tool for the study of neuronal groups. Neurosci. Lett. 14, 295–302 (1979).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Miyawaki, S., Tawhai, M. H., Hoffman, E. A., Wenzel, S. E. & Lin, C.-L. Automatic construction of subject-specific human airway geometry including trifurcations based on a CT-segmented airway skeleton and surface. Biomech. Model. Mechanobiol. 16, 583–596 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Schreiner, W. & Buxbaum, P. Computer-optimization of vascular trees. IEEE Trans. Biomed. Eng. 40, 482–491 (1993).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Jessen, E., Steinbach, M. C., Debbaut, C. & Schillinger, D. Rigorous mathematical optimization of synthetic hepatic vascular trees. J. R. Soc. Interface 19, 20220087 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Keelan, J., Chung, E. M. L. & Hague, J. P. Simulated annealing approach to vascular structure with application to the coronary arteries. R. Soc. Open Sci. 3, 150431 (2016).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bobenko, A. I., Sullivan, J. M., Schröder, P. & Ziegler, G. M. (eds) Discrete Differential Geometry (Birkhäuser, 2008).

  • Bianconi, G. & Rahmede, C. Complex quantum network manifolds in dimension d > 2 are scale-free. Sci. Rep. 5, 13979 (2015).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bianconi, G., Rahmede, C. & Wu, Z. Complex quantum network geometries: evolution and phase transitions. Phys. Rev. E 92, 022815 (2015).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Bianconi, G. & Rahmede, C. Network geometry with flavor: from complexity to quantum geometry. Phys. Rev. E 93, 032315 (2016).

    Article 
    ADS 
    MathSciNet 
    PubMed 

    Google Scholar
     

  • Gromov, M. Partial Differential Relations 1st edn (Springer, 1986).

  • Tong, D. Lectures on string theory. University of Cambridge http://www.damtp.cam.ac.uk/user/tong/string.html (2009).

  • Lynch, J. P. Steep, cheap and deep: an ideotype to optimize water and n acquisition by maize root systems. Ann. Bot. 112, 347–357 (2013).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Harris, S. D. Branching of fungal hyphae: regulation, mechanisms and comparison with other branching systems. Mycologia 100, 823–832 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Barabási, D. L. & Barabási, A.-L. A genetic model of the connectome. Neuron 105, 435–445 (2020).

    Article 

    Google Scholar
     

  • West, G. B., Brown, J. H. & Enquist, B. J. A general model for the origin of allometric scaling laws in biology. Science 276, 122–126 (1997).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Thompson, D. W. On Growth and Form (Cambridge Univ. Press, 1992).

  • West, G. Scale: The Universal Laws of Growth, Innovation, Sustainability, and the Pace of Life in Organisms, Cities, Economies, and Companies (Penguin Press, 2017).

  • Boccaletti, S., Latora, V., Moreno, Y., Chavez, M. & Hwang, D. U. Complex networks: structure and dynamics. Phys. Rep. 424, 175–308 (2006).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Pósfai, M. et al. Impact of physicality on network structure. Nat. Phys. 20, 142–149 (2024).

    Article 

    Google Scholar
     

  • Glover, C. & Barabási, A.-L. Measuring entanglement in physical networks. Phys. Rev. Lett. 133, 077401 (2024).

    Article 
    ADS 
    MathSciNet 
    PubMed 
    CAS 

    Google Scholar
     

  • Bonamassa, I. et al. Logarithmic kinetics and bundling in physical networks. Preprint at https://arxiv.org/abs/2401.02579 (2024).

  • Cimini, G. et al. The statistical physics of real-world networks. Nat. Rev. Phys. 1, 58–71 (2019).

    Article 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments