Thursday, September 4, 2025
No menu items!
HomeNatureSupervised learning in DNA neural networks

Supervised learning in DNA neural networks

  • McCulloch, W. S. & Pitts, W. A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5, 115–133 (1943).

    Article 
    MathSciNet 

    Google Scholar
     

  • Hopfield, J. J. Neural networks and physical systems with emergent collective computational abilities. Proc. Natl Acad. Sci. USA 79, 2554–2558 (1982).

    Article 
    ADS 
    MathSciNet 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qian, L., Winfree, E. & Bruck, J. Neural network computation with DNA strand displacement cascades. Nature 475, 368–372 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Cherry, K. M. & Qian, L. Scaling up molecular pattern recognition with DNA-based winner-take-all neural networks. Nature 559, 370–376 (2018).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Xiong, X. et al. Molecular convolutional neural networks with DNA regulatory circuits. Nat. Mach. Intell. 4, 625–635 (2022).

    Article 

    Google Scholar
     

  • Okumura, S. et al. Nonlinear decision-making with enzymatic neural networks. Nature 610, 496–501 (2022).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Chen, Z. et al. A synthetic protein-level neural network in mammalian cells. Science 386, 1243–1250 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Churchland, P. S. & Sejnowski, T. J. The Computational Brain (MIT Press, 2016).

  • Farmer, J. D., Packard, N. H. & Perelson, A. S. The immune system, adaptation, and machine learning. Physica D 22, 187–204 (1986).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Vladimirov, N. & Sourjik, V. Chemotaxis: how bacteria use memory. Biol. Chem. 390, 1097–1104 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Kieffer, C., Genot, A. J., Rondelez, Y. & Gines, G. Molecular computation for molecular classification. Adv. Biol. 7, 2200203 (2023).

    Article 

    Google Scholar
     

  • Nagipogu, R. T., Fu, D. & Reif, J. H. A survey on molecular-scale learning systems with relevance to DNA computing. Nanoscale 15, 7676–7694 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Vasle, A. H. & Moškon, M. Synthetic biological neural networks: from current implementations to future perspectives. Biosystems 237, 105164 (2024).

  • Hjelmfelt, A., Weinberger, E. D. & Ross, J. Chemical implementation of neural networks and Turing machines. Proc. Natl Acad. Sci. USA 88, 10983–10987 (1991).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Poole, W. et al. Chemical Boltzmann Machines. In 23rd International Conference on DNA Computing and Molecular Programming (DNA 23) (eds Brijder, R. & Qian, L.) 210–231 (Springer, 2017).

  • Vasić, M., Chalk, C., Luchsinger, A., Khurshid, S. & Soloveichik, D. Programming and training rate-independent chemical reaction networks. Proc. Natl Acad. Sci. USA 119, e2111552119 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buchler, N. E., Gerland, U. & Hwa, T. On schemes of combinatorial transcription logic. Proc. Natl Acad. Sci. USA 100, 5136–5141 (2003).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fernando, C. T. et al. Molecular circuits for associative learning in single-celled organisms. J. R. Soc. Interface 6, 463–469 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Rizik, L., Danial, L., Habib, M., Weiss, R. & Daniel, R. Synthetic neuromorphic computing in living cells. Nat. Commun. 13, 5602 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bray, D. Protein molecules as computational elements in living cells. Nature 376, 307–312 (1995).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Pandi, A. et al. Metabolic perceptrons for neural computing in biological systems. Nat. Commun. 10, 3880 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, J., Hopfield, J. & Winfree, E. Neural network computation by in vitro transcriptional circuits. Adv. Neural Inf. Process. Syst. 17, 681–688 (2004).

  • van der Linden, A. J. et al. DNA input classification by a riboregulator-based cell-free perceptron. ACS Synth. Biol. 11, 1510–1520 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Genot, A. J., Fujii, T. & Rondelez, Y. Scaling down DNA circuits with competitive neural networks. J. R. Soc. Interface 10, 20130212 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lakin, M. R. & Stefanovic, D. Supervised learning in adaptive DNA strand displacement networks. ACS Synth. Biol. 5, 885–897 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Evans, C. G., O’Brien, J., Winfree, E. & Murugan, A. Pattern recognition in the nucleation kinetics of non-equilibrium self-assembly. Nature 625, 500–507 (2024).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pei, R., Matamoros, E., Liu, M., Stefanovic, D. & Stojanovic, M. N. Training a molecular automaton to play a game. Nat. Nanotechnol. 5, 773–777 (2010).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Kim, J., Khetarpal, I., Sen, S. & Murray, R. M. Synthetic circuit for exact adaptation and fold-change detection. Nucleic Acids Res. 42, 6078–6089 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nakakuki, T. et al. DNA reaction system that acquires classical conditioning. ACS Synth. Biol. 13, 521–529 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rojas, R. Neural Networks: A Systematic Introduction (Springer, 2013).

  • MacQueen, J. Some methods for classification and analysis of multivariate observations. In Proc. Fifth Berkeley Symposium on Mathematical Statistics and Probability (eds Le Cam, L. M. & Neyman, J.) Vol. 1, 281–297 (University of California Press, 1967).

  • Yurke, B., Turberfield, A. J., Mills Jr, A. P., Simmel, F. C. & Neumann, J. L. A DNA-fuelled molecular machine made of DNA. Nature 406, 605–608 (2000).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Soloveichik, D., Seelig, G. & Winfree, E. DNA as a universal substrate for chemical kinetics. Proc. Natl Acad. Sci. USA 107, 5393–5398 (2010).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, Y.-J. et al. Programmable chemical controllers made from DNA. Nat. Nanotechnol. 8, 755–762 (2013).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Srinivas, N., Parkin, J., Seelig, G., Winfree, E. & Soloveichik, D. Enzyme-free nucleic acid dynamical systems. Science 358, eaal2052 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Qian, L. & Winfree, E. A simple DNA gate motif for synthesizing large-scale circuits. J. R. Soc. Interface 8, 1281–1297 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qian, L. & Winfree, E. Scaling up digital circuit computation with DNA strand displacement cascades. Science 332, 1196–1201 (2011).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Thubagere, A. J. et al. Compiler-aided systematic construction of large-scale DNA strand displacement circuits using unpurified components. Nat. Commun. 8, 14373 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Johnson, H. A. & Condon, A. A coupled reconfiguration mechanism for single-stranded DNA strand displacement systems. In 28th International Conference on DNA Computing and Molecular Programming (DNA 28) (eds Ouldridge, T. E. & Wickham, S. F. J.) Vol. 238, 3:1–3:19 (Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2022).

  • Yang, X., Tang, Y., Traynor, S. M. & Li, F. Regulation of DNA strand displacement using an allosteric DNA toehold. J. Am. Chem. Soc. 138, 14076–14082 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Haley, N. E. et al. Design of hidden thermodynamic driving for non-equilibrium systems via mismatch elimination during DNA strand displacement. Nat. Commun. 11, 2562 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deng, L. The MNIST database of handwritten digit images for machine learning research [best of the web]. IEEE Signal Process. Mag. 29, 141–142 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Seelig, G., Soloveichik, D., Zhang, D. Y. & Winfree, E. Enzyme-free nucleic acid logic circuits. Science 314, 1585–1588 (2006).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Baldwin, J. M. A new factor in evolution. Am. Nat. 30, 441–451 (1896).

    Article 

    Google Scholar
     

  • Hinton, G. E. & Nowlan, S. J. How learning can guide evolution. Complex Syst. 1, 495–502 (1987).


    Google Scholar
     

  • Genot, A. J., Bath, J. & Turberfield, A. J. Reversible logic circuits made of DNA. J. Am. Chem. Soc. 133, 20080–20083 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • DelRosso, N. V., Hews, S., Spector, L. & Derr, N. D. A molecular circuit regenerator to implement iterative strand displacement operations. Angew. Chem. Int. Ed. 56, 4443–4446 (2017).

    Article 

    Google Scholar
     

  • Scalise, D., Dutta, N. & Schulman, R. DNA strand buffers. J. Am. Chem. Soc. 140, 12069–12076 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Garg, S. et al. Renewable time-responsive DNA circuits. Small 14, 1801470 (2018).

    Article 

    Google Scholar
     

  • Hahn, J. & Shih, W. M. Thermal cycling of DNA devices via associative strand displacement. Nucleic Acids Res. 47, 10968–10975 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Clamons, S., Qian, L. & Winfree, E. Programming and simulating chemical reaction networks on a surface. J. R. Soc. Interface 17, 20190790 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Takinoue, M. DNA droplets for intelligent and dynamical artificial cells: from the viewpoint of computation and non-equilibrium systems. Interface Focus 13, 20230021 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, S. S. & Ellington, A. D. Pattern generation with nucleic acid chemical reaction networks. Chem. Rev. 119, 6370–6383 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Mordvintsev, A., Randazzo, E., Niklasson, E. & Levin, M. Growing neural cellular automata. Distill 5, e23 (2020).

    Article 

    Google Scholar
     

  • Randazzo, E., Mordvintsev, A., Niklasson, E., Levin, M. & Greydanus, S. Self-classifying MNIST digits. Distill 5, e00027–002 (2020).

    Article 

    Google Scholar
     

  • Lopez, R., Wang, R. & Seelig, G. A molecular multi-gene classifier for disease diagnostics. Nat. Chem. 10, 746–754 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Zhang, C. et al. Cancer diagnosis with DNA molecular computation. Nat. Nanotechnol. 15, 709–715 (2020).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Cangialosi, A. et al. DNA sequence-directed shape change of photopatterned hydrogels via high-degree swelling. Science 357, 1126–1130 (2017).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Fern, J. & Schulman, R. Modular DNA strand-displacement controllers for directing material expansion. Nat. Commun. 9, 3766 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stern, M. & Murugan, A. Learning without neurons in physical systems. Annu. Rev. Condensed Matter Phys. 14, 417–441 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Sanger, T. D. Optimal unsupervised learning in a single-layer linear feedforward neural network. Neural Netw. 2, 459–473 (1989).

    Article 

    Google Scholar
     

  • Al-Harbi, S. H. & Rayward-Smith, V. J. Adapting k-means for supervised clustering. Appl. Intell. 24, 219–226 (2006).

    Article 

    Google Scholar
     

  • Dirks, R. M., Bois, J. S., Schaeffer, J. M., Winfree, E. & Pierce, N. A. Thermodynamic analysis of interacting nucleic acid strands. SIAM Rev. 49, 65–88 (2007).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Fornace, M. E. et al. NUPACK: analysis and design of nucleic acid structures, devices, and systems. Preprint at https://doi.org/10.26434/chemrxiv-2022-xv98l (2022).

  • Cherry, K. M. & Qian, L. Supervised learning in DNA neural networks [Data set]. CaltechDATA https://doi.org/10.22002/5bvkt-r7y16 (2025).

  • RELATED ARTICLES

    Most Popular

    Recent Comments