Friday, July 25, 2025
No menu items!
HomeNatureSuperheating gold beyond the predicted entropy catastrophe threshold

Superheating gold beyond the predicted entropy catastrophe threshold

  • Fecht, J. & Johnson, W. L. Entropy and enthalpy catastrophe as a stability limit for crystalline material. Nature 334, 50–51 (1988).

    ADS 
    CAS 

    Google Scholar
     

  • Lele, S., Rao, P. R. & Dubey, K. S. Entropy catastrophe and superheating of crystals. Nature 336, 567–568 (1988).

    ADS 
    CAS 

    Google Scholar
     

  • Tallon, J. L. A hierarchy of catastrophes as a succession of stability limits for the crystalline state. Nature 342, 658–660 (1989).

    ADS 
    CAS 

    Google Scholar
     

  • Lu, K. & Li, Y. Homogeneous nucleation catastrophe as a kinetic stability limit for superheated crystal. Phys. Rev. Lett. 80, 4474–4477 (1998).

    ADS 
    CAS 

    Google Scholar
     

  • Luo, S.-N. & Ahrens, T. J. Superheating systematics of crystalline solids. Appl. Phys. Lett. 82, 1836–1838 (2003).

    ADS 
    CAS 

    Google Scholar
     

  • Gamaly, E. G. Ultra-fast disordering by fs-lasers: lattice superheating prior to the entropy catastrophe. Appl. Phys. A 101, 205–208 (2010).

    ADS 
    CAS 

    Google Scholar
     

  • Seok Hwang, Y. & Levitas, V. I. Phase field simulation of kinetic superheating and melting of aluminum nanolayer irradiated by pico- and femtosecond laser. Appl. Phys. Lett. 103, 263107 (2013).

    ADS 

    Google Scholar
     

  • Siwick, B. J., Dwyer, J. R., Jordan, R. E. & Miller, R. J. D. An atomic-level view of melting using femtosecond electron diffraction. Science 302, 1382–1385 (2003).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Williamson, S., Mourou, G. & Li, J. C. M. Time-resolved laser-induced phase transformation in aluminum. Phys. Rev. Lett. 52, 2364–2367 (1984).

    ADS 
    CAS 

    Google Scholar
     

  • Dwyer, J. R. et al. Femtosecond electron diffraction: an atomic perspective of condensed phase dynamics. J. Mod. Opt. 54, 905–922 (2007).

    ADS 
    CAS 

    Google Scholar
     

  • Ernstorfer, R. et al. The formation of warm dense matter: experimental evidence for electronic bond hardening in gold. Science 323, 1033–1037 (2009).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Molina, J. M. & White, T. G. A molecular dynamics study of laser-excited gold. Matter Radiat. Extremes 7, 036901 (2022).

    CAS 

    Google Scholar
     

  • Bosak, A. & Krisch, M. Phonon density of states probed by inelastic X-ray scattering. Phys. Rev. B 72, 224305 (2005).

    ADS 

    Google Scholar
     

  • Baron, A. Q. in Synchrotron Light Sources and Free-Electron Lasers: Accelerator Physics, Instrumentation and Science Applications (eds Jaeschke, E. J. et al.) 1643–1719 (Springer, 2016).

  • Rüffer, R. & Chumakov, A. I. in Synchrotron Light Sources and Free-Electron Lasers: Accelerator Physics, Instrumentation and Science Applications (eds Jaeschke, E. J. et al.) 2251–2287 (Springer, 2020).

  • Ritzmann, U., Oppeneer, P. M. & Maldonado, P. Theory of out-of-equilibrium electron and phonon dynamics in metals after femtosecond laser excitation. Phys. Rev. B 102, 214305 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Drake, G. W. F. (ed.) Springer Handbook of Atomic, Molecular, and Optical Physics. Springer Handbooks (Springer, 2023).

  • Monaco, G., Cunsolo, A., Pratesi, G., Sette, F. & Verbeni, R. Deep inelastic atomic scattering of X rays in liquid neon. Phys. Rev. Lett. 88, 227401 (2002).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Nagler, B. et al. The matter in extreme conditions instrument at the linac coherent light source. J. Synchrotron Radiat. 22, 520–525 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Glenzer, S. H. et al. Matter under extreme conditions experiments at the Linac Coherent Light Source. J. Phys. B 49, 092001 (2016).

    ADS 

    Google Scholar
     

  • Verbeni, R. et al. Advances in crystal analyzers for inelastic X-ray scattering. J. Phys. Chem. Solids 66, 2299–2305 (2005).

    ADS 
    CAS 

    Google Scholar
     

  • McBride, E. E. et al. Setup for meV-resolution inelastic X-ray scattering measurements and X-ray diffraction at the Matter in Extreme Conditions endstation at the Linac Coherent Light Source. Rev. Sci. Instrum. 89, 10F104 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • White, T. G. et al. Speed of sound in methane under conditions of planetary interiors. Phys. Rev. Res. 6, L022029 (2024).

    CAS 

    Google Scholar
     

  • Wollenweber, L. et al. High-resolution inelastic X-ray scattering at the high energy density scientific instrument at the European X-Ray Free-Electron Laser. Rev. Sci. Instrum. 92, 013101 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Descamps, A. et al. Evidence for phonon hardening in laser-excited gold using X-ray diffraction at a hard X-ray free electron laser. Sci. Adv. 10, eadh5272 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kraus, R. G. et al. Measuring the melting curve of iron at super-Earth core conditions. Science 375, 202–205 (2022).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Dornheim, T. et al. Accurate temperature diagnostics for matter under extreme conditions. Nat. Commun. 13, 7911 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Benedetti, L. R. et al. Dissociation of CH4 at high pressures and temperatures: diamond formation in giant planet interiors? Science 286, 100–102 (1999).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, Z. et al. Evolution of ac conductivity in nonequilibrium warm dense gold. Phys. Rev. Lett. 110, 135001 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Petrov, Y. V., Inogamov, N. A. & Migdal, K. P. Thermal conductivity and the electron-ion heat transfer coefficient in condensed media with a strongly excited electron subsystem. JETP Lett. 97, 20–27 (2013).

    ADS 
    CAS 

    Google Scholar
     

  • Petrov, Y. V., Migdal, K. P., Inogamov, N. A. & Zhakhovsky, V. V. Two-temperature equation of state for aluminum and gold with electrons excited by an ultrashort laser pulse. Appl. Phys. B 119, 401–411 (2015).

    ADS 
    CAS 

    Google Scholar
     

  • Prescher, C. & Prakapenka, V. B. DIOPTAS: a program for reduction of two-dimensional X-ray diffraction data and data exploration. High Pressure Res. 35, 223–230 (2015).

    ADS 
    CAS 

    Google Scholar
     

  • Warren, B. E. X-ray Diffraction (Dover, 1990).

  • Lynn, J. W., Smith, H. G. & Nicklow, R. M. Lattice dynamics of gold. Phys. Rev. B 8, 3493–3499 (1973).

    ADS 
    CAS 

    Google Scholar
     

  • Mo, M. Z. et al. Heterogeneous to homogeneous melting transition visualized with ultrafast electron diffraction. Science 360, 1451–1455 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Rethfeld, B., Sokolowski-Tinten, K., von der Linde, D. & Anisimov, S. I. Ultrafast thermal melting of laser-excited solids by homogeneous nucleation. Phys. Rev. B 65, 092103 (2002).

    ADS 

    Google Scholar
     

  • Speedy, R. J. Kauzmann’s paradox and the glass transition. Biophys. Chem. 105, 411–420 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • Kauzmann, W. The nature of the glassy state and the behavior of liquids at low temperatures. Chem. Rev. 43, 219–256 (1948).

    CAS 

    Google Scholar
     

  • Berthier, L. & Reichman, D. R. Modern computational studies of the glass transition. Nat. Rev. Phys. 5, 102–116 (2023).


    Google Scholar
     

  • Welch, R. S. et al. Cracking the Kauzmann paradox. Acta Mater. 254, 118994 (2023).

    CAS 

    Google Scholar
     

  • Arblaster, J. W. Thermodynamic properties of gold. J. Phase Equilibria Diffus. 37, 229–245 (2016).

    CAS 

    Google Scholar
     

  • Lin, Z., Zhigilei, L. V. & Celli, V. Electron–phonon coupling and electron heat capacity of metals under conditions of strong electron–phonon nonequilibrium. Phys. Rev. B 77, 075133 (2008).

    ADS 

    Google Scholar
     

  • Chen, Z. et al. Interatomic potential in the nonequilibrium warm dense matter regime. Phys. Rev. Lett. 121, 075002 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ao, T. et al. Optical properties in nonequilibrium phase transitions. Phys. Rev. Lett. 96, 055001 (2006).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Baggioli, M. & Zaccone, A. Explaining the specific heat of liquids based on instantaneous normal modes. Phys. Rev. E 104, 014103 (2021).

    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • White, T. G. et al. Superheating gold beyond the predicted entropy catastrophe threshold data. Zenodo https://doi.org/10.5281/zenodo.15445637 (2025).

  • RELATED ARTICLES

    Most Popular

    Recent Comments