Fecht, J. & Johnson, W. L. Entropy and enthalpy catastrophe as a stability limit for crystalline material. Nature 334, 50–51 (1988).
Lele, S., Rao, P. R. & Dubey, K. S. Entropy catastrophe and superheating of crystals. Nature 336, 567–568 (1988).
Tallon, J. L. A hierarchy of catastrophes as a succession of stability limits for the crystalline state. Nature 342, 658–660 (1989).
Lu, K. & Li, Y. Homogeneous nucleation catastrophe as a kinetic stability limit for superheated crystal. Phys. Rev. Lett. 80, 4474–4477 (1998).
Luo, S.-N. & Ahrens, T. J. Superheating systematics of crystalline solids. Appl. Phys. Lett. 82, 1836–1838 (2003).
Gamaly, E. G. Ultra-fast disordering by fs-lasers: lattice superheating prior to the entropy catastrophe. Appl. Phys. A 101, 205–208 (2010).
Seok Hwang, Y. & Levitas, V. I. Phase field simulation of kinetic superheating and melting of aluminum nanolayer irradiated by pico- and femtosecond laser. Appl. Phys. Lett. 103, 263107 (2013).
Siwick, B. J., Dwyer, J. R., Jordan, R. E. & Miller, R. J. D. An atomic-level view of melting using femtosecond electron diffraction. Science 302, 1382–1385 (2003).
Williamson, S., Mourou, G. & Li, J. C. M. Time-resolved laser-induced phase transformation in aluminum. Phys. Rev. Lett. 52, 2364–2367 (1984).
Dwyer, J. R. et al. Femtosecond electron diffraction: an atomic perspective of condensed phase dynamics. J. Mod. Opt. 54, 905–922 (2007).
Ernstorfer, R. et al. The formation of warm dense matter: experimental evidence for electronic bond hardening in gold. Science 323, 1033–1037 (2009).
Molina, J. M. & White, T. G. A molecular dynamics study of laser-excited gold. Matter Radiat. Extremes 7, 036901 (2022).
Bosak, A. & Krisch, M. Phonon density of states probed by inelastic X-ray scattering. Phys. Rev. B 72, 224305 (2005).
Baron, A. Q. in Synchrotron Light Sources and Free-Electron Lasers: Accelerator Physics, Instrumentation and Science Applications (eds Jaeschke, E. J. et al.) 1643–1719 (Springer, 2016).
Rüffer, R. & Chumakov, A. I. in Synchrotron Light Sources and Free-Electron Lasers: Accelerator Physics, Instrumentation and Science Applications (eds Jaeschke, E. J. et al.) 2251–2287 (Springer, 2020).
Ritzmann, U., Oppeneer, P. M. & Maldonado, P. Theory of out-of-equilibrium electron and phonon dynamics in metals after femtosecond laser excitation. Phys. Rev. B 102, 214305 (2020).
Drake, G. W. F. (ed.) Springer Handbook of Atomic, Molecular, and Optical Physics. Springer Handbooks (Springer, 2023).
Monaco, G., Cunsolo, A., Pratesi, G., Sette, F. & Verbeni, R. Deep inelastic atomic scattering of X rays in liquid neon. Phys. Rev. Lett. 88, 227401 (2002).
Nagler, B. et al. The matter in extreme conditions instrument at the linac coherent light source. J. Synchrotron Radiat. 22, 520–525 (2015).
Glenzer, S. H. et al. Matter under extreme conditions experiments at the Linac Coherent Light Source. J. Phys. B 49, 092001 (2016).
Verbeni, R. et al. Advances in crystal analyzers for inelastic X-ray scattering. J. Phys. Chem. Solids 66, 2299–2305 (2005).
McBride, E. E. et al. Setup for meV-resolution inelastic X-ray scattering measurements and X-ray diffraction at the Matter in Extreme Conditions endstation at the Linac Coherent Light Source. Rev. Sci. Instrum. 89, 10F104 (2018).
White, T. G. et al. Speed of sound in methane under conditions of planetary interiors. Phys. Rev. Res. 6, L022029 (2024).
Wollenweber, L. et al. High-resolution inelastic X-ray scattering at the high energy density scientific instrument at the European X-Ray Free-Electron Laser. Rev. Sci. Instrum. 92, 013101 (2021).
Descamps, A. et al. Evidence for phonon hardening in laser-excited gold using X-ray diffraction at a hard X-ray free electron laser. Sci. Adv. 10, eadh5272 (2024).
Kraus, R. G. et al. Measuring the melting curve of iron at super-Earth core conditions. Science 375, 202–205 (2022).
Dornheim, T. et al. Accurate temperature diagnostics for matter under extreme conditions. Nat. Commun. 13, 7911 (2022).
Benedetti, L. R. et al. Dissociation of CH4 at high pressures and temperatures: diamond formation in giant planet interiors? Science 286, 100–102 (1999).
Chen, Z. et al. Evolution of ac conductivity in nonequilibrium warm dense gold. Phys. Rev. Lett. 110, 135001 (2013).
Petrov, Y. V., Inogamov, N. A. & Migdal, K. P. Thermal conductivity and the electron-ion heat transfer coefficient in condensed media with a strongly excited electron subsystem. JETP Lett. 97, 20–27 (2013).
Petrov, Y. V., Migdal, K. P., Inogamov, N. A. & Zhakhovsky, V. V. Two-temperature equation of state for aluminum and gold with electrons excited by an ultrashort laser pulse. Appl. Phys. B 119, 401–411 (2015).
Prescher, C. & Prakapenka, V. B. DIOPTAS: a program for reduction of two-dimensional X-ray diffraction data and data exploration. High Pressure Res. 35, 223–230 (2015).
Warren, B. E. X-ray Diffraction (Dover, 1990).
Lynn, J. W., Smith, H. G. & Nicklow, R. M. Lattice dynamics of gold. Phys. Rev. B 8, 3493–3499 (1973).
Mo, M. Z. et al. Heterogeneous to homogeneous melting transition visualized with ultrafast electron diffraction. Science 360, 1451–1455 (2018).
Rethfeld, B., Sokolowski-Tinten, K., von der Linde, D. & Anisimov, S. I. Ultrafast thermal melting of laser-excited solids by homogeneous nucleation. Phys. Rev. B 65, 092103 (2002).
Speedy, R. J. Kauzmann’s paradox and the glass transition. Biophys. Chem. 105, 411–420 (2003).
Kauzmann, W. The nature of the glassy state and the behavior of liquids at low temperatures. Chem. Rev. 43, 219–256 (1948).
Berthier, L. & Reichman, D. R. Modern computational studies of the glass transition. Nat. Rev. Phys. 5, 102–116 (2023).
Welch, R. S. et al. Cracking the Kauzmann paradox. Acta Mater. 254, 118994 (2023).
Arblaster, J. W. Thermodynamic properties of gold. J. Phase Equilibria Diffus. 37, 229–245 (2016).
Lin, Z., Zhigilei, L. V. & Celli, V. Electron–phonon coupling and electron heat capacity of metals under conditions of strong electron–phonon nonequilibrium. Phys. Rev. B 77, 075133 (2008).
Chen, Z. et al. Interatomic potential in the nonequilibrium warm dense matter regime. Phys. Rev. Lett. 121, 075002 (2018).
Ao, T. et al. Optical properties in nonequilibrium phase transitions. Phys. Rev. Lett. 96, 055001 (2006).
Baggioli, M. & Zaccone, A. Explaining the specific heat of liquids based on instantaneous normal modes. Phys. Rev. E 104, 014103 (2021).
White, T. G. et al. Superheating gold beyond the predicted entropy catastrophe threshold data. Zenodo https://doi.org/10.5281/zenodo.15445637 (2025).