Törmä, P., Peotta, S. & Bernevig, B. A. Superconductivity, superfluidity and quantum geometry in twisted multilayer systems. Nat. Rev. Phys. 4, 528–542 (2022).
Tian, H. et al. Evidence for Dirac flat band superconductivity enabled by quantum geometry. Nature 614, 440–444 (2023).
Cao, Y. et al. Correlated insulator behavior at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).
Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).
Cao, Y. et al. Strange metal in magic-angle graphene with near Planckian dissipation. Phys. Rev. Lett. 124, 076801 (2020).
Balents, L., Dean, C. R., Efetov, D. K. & Young, A. F. Superconductivity and strong correlations in moiré flat bands. Nat. Phys. 16, 725–733 (2020).
Andrei, E. Y. & MacDonald, A. H. Graphene bilayers with a twist. Nat. Mater. 19, 1265–1275 (2020).
Oh, M. et al. Evidence for unconventional superconductivity in twisted bilayer graphene. Nature 600, 240–245 (2021).
Cao, Y. et al. Nematicity and competing orders in superconducting magic-angle graphene. Science 372, 264–271 (2021).
Peotta, S. & Törmä, P. Superfluidity in topologically nontrivial flat bands. Nat. Commun. 6, 8944 (2015).
Hu, X., Hyart, T., Pikulin, D. I. & Rossi, E. Geometric and conventional contribution to the superfluid weight in twisted bilayer graphene. Phys. Rev. Lett. 123, 237002 (2019).
Julku, A., Peltonen, T. J., Liang, L., Heikkilä, T. T. & Törmä, P. Superfluid weight and Berezinskii-Kosterlitz-Thouless transition temperature of twisted bilayer graphene. Phys. Rev. B 101, 060505 (2020).
Xie, F., Song, Z., Lian, B. & Bernevig, B. A. Topology-bounded superfluid weight in twisted bilayer graphene. Phys. Rev. Lett. 124, 167002 (2020).
Hofmann, J. S., Chowdhury, D., Kivelson, S. A. & Berg, E. Heuristic bounds on superconductivity and how to exceed them. npj Quantum Mater. 7, 83 (2022).
Ma, C. et al. Moiré band topology in twisted bilayer graphene. Nano Lett. 20, 6076–6083 (2020).
Andrei, E. Y. et al. The marvels of moiré materials. Nat. Rev. Mater. 6, 201–206 (2021).
Tinkham, M. Introduction to Superconductivity: Second Edition (Dover Publications, 2004).
Prozorov, R. & Giannetta, R. W. Magnetic penetration depth in unconventional superconductors. Supercond. Sci. Technol. 19, R41 (2006).
Hardy, W., Kamal, S. & Bonn, D. Magnetic Penetration Depths in Cuprates: A Short Review of Measurement Techniques and Results (Springer, 2002).
Bøttcher, C. et al. Circuit quantum electrodynamics detection of induced two-fold anisotropic pairing in a hybrid superconductor–ferromagnet bilayer. Nat. Phys. 20, 1609–1615 (2024).
Phan, D. et al. Detecting induced p ± ip pairing at the Al-InAs interface with a quantum microwave circuit. Phys. Rev. Lett. 128, 107701 (2022).
Weitzel, A. et al. Sharpness of the Berezinskii-Kosterlitz-Thouless transition in disordered NbN films. Phys. Rev. Lett. 131, 186002 (2023).
Penttilä, R. P. S., Huhtinen, K.-E. & Törmä, P. Flat-band ratio and quantum metric in the superconductivity of modified Lieb lattices. Preprint at https://arxiv.org/abs/2404.12993 (2024).
Probst, S., Song, F. B., Bushev, P. A., Ustinov, A. V. & Weides, M. Efficient and robust analysis of complex scattering data under noise in microwave resonators. Rev. Sci. Instrum. 86, 024706 (2015).
Emery, V. & Kivelson, S. Importance of phase fluctuations in superconductors with small superfluid density. Nature 374, 434–437 (1995).
Kosterlitz, J. M. & Thouless, D. J. in Basic Notions Of Condensed Matter Physics 493–515 (CRC Press, 1973).
Berdyugin, A. I. et al. Out-of-equilibrium criticalities in graphene superlattices. Science 375, 430–433 (2022).
Wu, F. Topological chiral superconductivity with spontaneous vortices and supercurrent in twisted bilayer graphene. Phys. Rev. B 99, 195114 (2019).
Törmä, P. Essay: where can quantum geometry lead us? Phys. Rev. Lett. 131, 240001 (2023).
Hirschfeld, P. J. & Goldenfeld, N. Effect of strong scattering on the low-temperature penetration depth of a d-wave superconductor. Phys. Rev. B 48, 4219 (1993).
Roppongi, M. et al. Bulk evidence of anisotropic s-wave pairing with no sign change in the kagome superconductor CsV3Sb5. Nat. Commun. 14, 667 (2023).
Teknowijoyo, S. et al. Nodeless superconductivity in the type-II Dirac semimetal PdTe2: London penetration depth and pairing-symmetry analysis. Phys. Rev. B 98, 024508 (2018).
Khvalyuk, A. V., Charpentier, T., Roch, N., Sacépé, B. & Feigel’Man, M. V. Near power-law temperature dependence of the superfluid stiffness in strongly disordered superconductors. Phys. Rev. B 109, 144501 (2024).
Ghosal, A., Randeria, M. & Trivedi, N. Inhomogeneous pairing in highly disordered s-wave superconductors. Phys. Rev. B 65, 014501 (2001).
Mishra, V. et al. Lifting of nodes by disorder in extended-s-state superconductors: application to ferropnictides. Phys. Rev. B 79, 094512 (2009).
Cho, K. et al. Energy gap evolution across the superconductivity dome in single crystals of (Ba1–xKx) Fe2As2. Sci. Adv. 2, e1600807 (2016).
Gittleman, J., Rosenblum, B., Seidel, T. & Wicklund, A. Nonlinear reactance of superconducting films. Phys. Rev. 137, A527 (1965).
Enpuku, K., Hoashi, M., Doi, H. D. H. & Kisu, T. K. T. Modulation of kinetic inductance of high Tc superconducting thin films with bias current. Jpn. J. Appl. Phys. 32, 3804 (1993).
Kubo, T. Superfluid flow in disordered superconductors with Dynes pair-breaking scattering: depairing current, kinetic inductance, and superheating field. Phys. Rev. Res. 2, 033203 (2020).
Anthore, A., Pothier, H. & Esteve, D. Density of states in a superconductor carrying a supercurrent. Phys. Rev. Lett. 90, 127001 (2003).
Luomahaara, J., Vesterinen, V., Grönberg, L. & Hassel, J. Kinetic inductance magnetometer. Nat. Commun. 5, 4872 (2014).
Ku, J., Manucharyan, V. & Bezryadin, A. Superconducting nanowires as nonlinear inductive elements for qubits. Phys. Rev. B 82, 134518 (2010).
Claassen, J., Adrian, S. & Soulen, R. Large non-linear kinetic inductance in superconductor/normal metal bilayer films. IEEE Trans. Appl. Supercond. 9, 4189–4192 (1999).
Thomas, C. N., Withington, S., Sun, Z., Skyrme, T. & Goldie, D. J. Nonlinear effects in superconducting thin film microwave resonators. New J. Phys. 22, 073028 (2020).
Vissers, M. R. et al. Frequency-tunable superconducting resonators via nonlinear kinetic inductance. Appl. Phys. Lett. 107, 062601 (2015).
Kirsh, N. et al. Linear and nonlinear properties of a compact high-kinetic-inductance WSi multimode resonator. Phys. Rev. A 16, 044017 (2021).
Zhao, S., Withington, S., Goldie, D. J. & Thomas, C. N. Nonlinear properties of supercurrent-carrying single-and multi-layer thin-film superconductors. J. Low Temp. Phys. 199, 34–44 (2020).
Carrington, A., Giannetta, R., Kim, J. & Giapintzakis, J. Absence of nonlinear Meissner effect in YBa2Cu3O6.95. Phys. Rev. B 59, R14173 (1999).
Li, M.-R., Hirschfeld, P. & Wölfle, P. Is the nonlinear Meissner effect unobservable? Phys. Rev. Lett. 81, 5640 (1998).
Banerjee, A. et al. Superfluid stiffness of twisted trilayer graphene superconductors. Nature https://doi.org/10.1038/s41586-024-08444-3 (2025).
Yan, F. et al. The flux qubit revisited to enhance coherence and reproducibility. Nat. Commun. 7, 12964 (2016).
Wang, J. I.-J. et al. Coherent control of a hybrid superconducting circuit made with graphene-based van der Waals heterostructures. Nat. Nanotechnol. 14, 120–125 (2019).
Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).
Pozar, D. M. Microwave Engineering (John Wiley & Sons, 2011).
Schmidt, F. E., Jenkins, M. D., Watanabe, K., Taniguchi, T. & Steele, G. A. A ballistic graphene superconducting microwave circuit. Nat. Commun. 9, 4069 (2018).
Bretheau, L. et al. Tunnelling spectroscopy of Andreev states in graphene. Nat. Phys. 13, 756–760 (2017).
Schwinger, J. On gauge invariance and vacuum polarization. Phys. Rev. 82, 664 (1951).