Sunday, November 24, 2024
No menu items!
HomeNatureSuperconductivity under pressure in a chromium-based kagome metal

Superconductivity under pressure in a chromium-based kagome metal

  • Ko, W.-H., Lee, P. A. & Wen, X.-G. Doped kagome system as exotic superconductor. Phys. Rev. B 79, 214502 (2009).

    ADS 

    Google Scholar
     

  • Yu, S.-L. & Li, J.-X. Chiral superconducting phase and chiral spin-density-wave phase in a Hubbard model on the kagome lattice. Phys. Rev. B 85, 144402 (2012).

    ADS 

    Google Scholar
     

  • Wang, W.-S., Li, Z.-Z., Xiang, Y.-Y. & Wang, Q.-H. Competing electronic orders on kagome lattices at van Hove filling. Phys. Rev. B 87, 115135 (2013).

    ADS 

    Google Scholar
     

  • Kiesel, M. L., Platt, C. & Thomale, R. Unconventional Fermi surface instabilities in the kagome Hubbard model. Phys. Rev. Lett. 110, 126405 (2013).

    ADS 
    PubMed 

    Google Scholar
     

  • Zhou, Y., Kanoda, K. & Ng, T.-K. Quantum spin liquid states. Rev. Mod. Phys. 89, 025003 (2017).

    ADS 
    MathSciNet 

    Google Scholar
     

  • Norman, M. R. Colloquium: herbertsmithite and the search for the quantum spin liquid. Rev. Mod. Phys. 88, 041002 (2016).

    ADS 
    MathSciNet 

    Google Scholar
     

  • Kelly, Z. A., Gallagher, M. J. & McQueen, T. M. Electron doping a kagome spin liquid. Phys. Rev. X 6, 041007 (2016).


    Google Scholar
     

  • Ortiz, B. R. et al. New kagome prototype materials: discovery of KV3Sb5, RbV3Sb5, and CsV3Sb5. Phys. Rev. Mater. 3, 094407 (2019).

    CAS 

    Google Scholar
     

  • Ortiz, B. R. et al. Cs V3Sb5: a \({{\mathbb{Z}}}_{2}\) topological kagome metal with a superconducting ground state. Phys. Rev. Lett. 125, 247002 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ortiz, B. R. et al. Superconductivity in the \({{\mathbb{Z}}}_{2}\) kagome metal KV3Sb5. Phys. Rev. Mater. 5, 034801 (2021).

    CAS 

    Google Scholar
     

  • Yin, Q. et al. Superconductivity and normal-state properties of kagome metal RbV3Sb5 single crystals. Chin. Phys. Lett. 38, 037403 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • Jiang, Y.-X. et al. Unconventional chiral charge order in kagome superconductor KV3Sb5. Nat. Mater. 20, 1353–1357 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ortiz, B. R. et al. Fermi surface mapping and the nature of charge-density-wave order in the kagome superconductor CsV3Sb5. Phys. Rev. X 11, 041030 (2021).

    CAS 

    Google Scholar
     

  • Liang, Z. et al. Three-dimensional charge density wave and surface-dependent vortex-core states in a kagome superconductor CsV3Sb5. Phys. Rev. X 11, 031026 (2021).

    CAS 

    Google Scholar
     

  • Zhao, J., Wu, W., Wang, Y. & Yang, S. A. Electronic correlations in the normal state of the kagome superconductor KV3Sb5. Phys. Rev. B 103, L241117 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • Luo, H. et al. Electronic nature of charge density wave and electron-phonon coupling in kagome superconductor KV3Sb5. Nat. Commun. 13, 273 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Colombier, E., Bud’ko, S. L., Ni, N. & Canfield, P. C. Complete pressure-dependent phase diagrams for SrFe2As2 and SrFe2As2. Phys. Rev. B 79, 224518 (2009).

    ADS 

    Google Scholar
     

  • Shibauchi, T., Carrington, A. & Matsuda, Y. A quantum critical point lying beneath the superconducting dome in iron pnictides. Annu. Rev. Condens. Matter Phys. 5, 113–135 (2014).

    ADS 
    CAS 

    Google Scholar
     

  • Yin, J.-X., Lian, B. & Hasan, M. Z. Topological kagome magnets and superconductors. Nature 612, 647–657 (2022).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhong, Y. et al. Nodeless electron pairing in CsV3Sb5-derived kagome superconductors. Nature 617, 488–492 (2023).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Neupert, T., Denner, M. M., Yin, J.-X., Thomale, R. & Hasan, M. Z. Charge order and superconductivity in kagome materials. Nat. Phys. 18, 137–143 (2022).

    CAS 

    Google Scholar
     

  • Kang, M. et al. Twofold van Hove singularity and origin of charge order in topological kagome superconductor CsV3Sb5. Nat. Phys. 18, 301–308 (2022).

    CAS 

    Google Scholar
     

  • Zhao, H. et al. Cascade of correlated electron states in the kagome superconductor CsV3Sb5. Nature 599, 216–221 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mielke, C.III et al. Time-reversal symmetry-breaking charge order in a kagome superconductor. Nature 602, 245–250 (2022).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, S.-Y. et al. Giant, unconventional anomalous Hall effect in the metallic frustrated magnet candidate, KV3Sb5. Sci. Adv. 6, eabb6003 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, H. et al. Roton pair density wave in a strong-coupling kagome superconductor. Nature 599, 222–228 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Nie, L. et al. Charge-density-wave-driven electronic nematicity in a kagome superconductor. Nature 604, 59–64 (2022).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang, K. et al. Kagome superconductors AV3Sb5 (A = K, Rb, Cs). Natl Sci. Rev. 10, nwac199 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, Y. et al. Enhancement of superconductivity and suppression of charge-density wave in As-doped CsV3Sb5. Phys. Rev. Mater. 6, 124803 (2022).

    CAS 

    Google Scholar
     

  • Johnston, D. C. The puzzle of high temperature superconductivity in layered iron pnictides and chalcogenides. Adv. Phys. 59, 803–1061 (2010).

    ADS 
    CAS 

    Google Scholar
     

  • Emery, V. J. & Kivelson, S. A. Superconductivity in bad metals. Phys. Rev. Lett. 74, 3253–3256 (1995).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Duan, W. et al. Nodeless superconductivity in the kagome metal CsV3Sb5. Sci. China Phys. Mech. Astron.64, 107462 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • Bao, J.-K. et al. Superconductivity in quasi-one-dimensional K2Cr3As3 with significant electron correlations. Phys. Rev. X 5, 011013 (2015).

    MathSciNet 
    CAS 

    Google Scholar
     

  • Ramirez, A. Strongly geometrically frustrated magnets. Annu. Rev. Mater. Sci. 24, 453–480 (1994).

    ADS 
    CAS 

    Google Scholar
     

  • Kitagawa, K., Katayama, N., Ohgushi, K., Yoshida, M. & Takigawa, M. Commensurate itinerant antiferromagnetism in BaFe2As2: 75As-NMR studies on a self-flux grown single crystal. J. Phys. Soc. Jpn. 77, 114709 (2008).

    ADS 

    Google Scholar
     

  • Xu, C. et al. Frustrated altermagnetism and charge density wave in kagome superconductor CsCr3Sb5. Preprint at arxiv.org/abs/2309.14812 (2023).

  • Zhu, X., Zhang, J., Guo, J. & Plummer, E. W. Misconceptions associated with the origin of charge density waves. Adv. Phys. X 2, 622–640 (2017).

    CAS 

    Google Scholar
     

  • Hu, Y. et al. Real-space observation of incommensurate spin density wave and coexisting charge density wave on Cr (001) surface. Nat. Commun. 13, 445 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, J. et al. Intertwined density waves in a metallic nickelate. Nat. Commun. 11, 6003 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, W. et al. Superconductivity in the vicinity of antiferromagnetic order in CrAs. Nat. Commun. 5, 5508 (2014).

    ADS 
    PubMed 

    Google Scholar
     

  • Cheng, J.-G. et al. Pressure induced superconductivity on the border of magnetic order in MnP. Phys. Rev. Lett. 114, 117001 (2015).

    ADS 
    PubMed 

    Google Scholar
     

  • Löhneysen, H. V., Rosch, A., Vojta, M. & Wölfle, P. Fermi-liquid instabilities at magnetic quantum phase transitions. Rev. Mod. Phys. 79, 1015–1075 (2007).

    ADS 

    Google Scholar
     

  • Lifshitz, I. M. Anomalies of electron characteristics of a metal in the high pressure region. Sov. Phys. J. Exp. Theor. Phys. 11, 1130–1135 (1960).


    Google Scholar
     

  • Zheng, L. et al. Emergent charge order in pressurized kagome superconductor CsV3Sb5. Nature 611, 682–687 (2022).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Z. et al. Pressure-induced reemergence of superconductivity in the topological kagome metal CsV3Sb5. Phys. Rev. B 103, 224513 (2021).

    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Chen, K. Y. et al. Double superconducting dome and triple enhancement of Tc in the kagome superconductor CsV3Sb5 under high pressure. Phys. Rev. Lett. 126, 247001 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Scalapino, D. J. A common thread: the pairing interaction for unconventional superconductors. Rev. Mod. Phys. 84, 1383–1417 (2012).

    ADS 
    CAS 

    Google Scholar
     

  • Stewart, G. R. Unconventional superconductivity. Adv. Phys. 66, 75–196 (2017).

    ADS 

    Google Scholar
     

  • Norman, M. R. The challenge of unconventional superconductivity. Science 332, 196–200 (2011).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Palatinus, L. & Chapuis, G. SUPERFLIP – a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. J. Appl. Crystallogr. 40, 786–790 (2007).

    ADS 
    CAS 

    Google Scholar
     

  • Petricek, V., Dusek, M. & Palatinus, L. Crystallographic computing system JANA2006: general features. Z. Kristallogr. Cryst. Mater. 229, 345–352 (2014).

    CAS 

    Google Scholar
     

  • Luo, J. et al. Possible star-of-David pattern charge density wave with additional modulation in the kagome superconductor CsV3Sb5. npj Quantum Mater. 7, 30 (2022).

    ADS 
    CAS 

    Google Scholar
     

  • Cheng, J. G. et al. Integrated-fin gasket for palm cubic-anvil high pressure apparatus. Rev. Sci. Instrum. 85, 093907 (2014).

    ADS 
    PubMed 

    Google Scholar
     

  • Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    ADS 
    CAS 

    Google Scholar
     

  • Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    ADS 

    Google Scholar
     

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Perdew, J. P. et al. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008).

    ADS 
    PubMed 

    Google Scholar
     

  • Kawamura, M. FermiSurfer: Fermi-surface viewer providing multiple representation schemes. Comput. Phys. Commun. 239, 197–203 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • Marzari, N. & Vanderbilt, D. Maximally localized generalized Wannier functions for composite energy bands. Phys. Rev. B 56, 12847–12865 (1997).

    ADS 
    CAS 

    Google Scholar
     

  • Kautzsch, L. et al. Structural evolution of the kagome superconductors AV3Sb5 (A = K, Rb, and Cs) through charge density wave order. Phys. Rev. Mater. 7, 024806 (2023).

    CAS 

    Google Scholar
     

  • Ortiz, B. R. et al. CsV3Sb5: a \({{\mathbb{Z}}}_{2}\) topological kagome metal with a superconducting ground state. Phys. Rev. Lett. 125, 247002 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiang, Y. et al. Twofold symmetry of c-axis resistivity in topological kagome superconductor CsV3Sb5 with in-plane rotating magnetic field. Nat. Commun. 12, 6727 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments