Thursday, January 23, 2025
No menu items!
HomeNatureSuperconductivity in 5.0° twisted bilayer WSe2

Superconductivity in 5.0° twisted bilayer WSe2

  • Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Yankowitz, M. et al. Tuning superconductivity in twisted bilayer graphene. Science 363, 1059–1064 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Lu, X. et al. Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene. Nature 574, 653–657 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Park, J. M., Cao, Y., Watanabe, K., Taniguchi, T. & Jarillo-Herrero, P. Tunable strongly coupled superconductivity in magic-angle twisted trilayer graphene. Nature 590, 249–255 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Hao, Z. et al. Electric field–tunable superconductivity in alternating-twist magic-angle trilayer graphene. Science 371, 1133–1138 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Bistritzer, R. & MacDonald, A. H. Moiré bands in twisted double-layer graphene. Proc. Natl Acad. Sci. USA 108, 12233–12237 (2011).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, F., Lovorn, T., Tutuc, E. & MacDonald, A. H. Hubbard model physics in transition metal dichalcogenide moiré bands. Phys. Rev. Lett. 121, 026402 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Naik, M. H. & Jain, M. Ultraflatbands and shear solitons in moiré patterns of twisted bilayer transition metal dichalcogenides. Phys. Rev. Lett. 121, 266401 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Wang, L. et al. Correlated electronic phases in twisted bilayer transition metal dichalcogenides. Nat. Mater. 19, 861–866 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Tang, Y. et al. Simulation of Hubbard model physics in WSe2/WS2 moiré superlattices. Nature 579, 353–358 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Anderson, E. et al. Programming correlated magnetic states via gate controlled moiré geometry. Science 381, 325–330 (2023).

  • Regan, E. C. et al. Mott and generalized Wigner crystal states in WSe2/WS2 moiré superlattices. Nature 579, 359–363 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Li, H. et al. Imaging two-dimensional generalized Wigner crystals. Nature 597, 650–654 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Xu, Y. et al. Correlated insulating states at fractional fillings of moiré superlattices. Nature 587, 214–218 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Li, T. et al. Quantum anomalous Hall effect from intertwined moiré bands. Nature 600, 641–646 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Cai, J. et al. Signatures of fractional quantum anomalous Hall states in twisted MoTe2 bilayer. Nature 622, 63–68 (2023).

  • Zeng, Y. et al. Thermodynamic evidence of fractional Chern insulator in moiré MoTe2. Nature 622, 69–73 (2023).

  • Park, H. et al. Observation of fractionally quantized anomalous Hall effect. Nature 622, 74–79 (2023).

  • Foutty, B. A. et al. Mapping twist-tuned multiband topology in bilayer WSe2. Science 384, 343–347 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ghiotto, A. et al. Stoner instabilities and Ising excitonic states in twisted transition metal dichalcogenides. Preprint at https://arxiv.org/abs/2405.17316 (2024).

  • Mathur, N. D. et al. Magnetically mediated superconductivity in heavy fermion compounds. Nature 394, 39–43 (1998).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Sharpe, A. L. et al. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science 365, 605–608 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Serlin, M. et al. Intrinsic quantized anomalous Hall effect in a moiré heterostructure. Science 367, 900–903 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Zhou, H., Xie, T., Taniguchi, T., Watanabe, K. & Young, A. F. Superconductivity in rhombohedral trilayer graphene. Nature 598, 434–438 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, H. et al. Isospin magnetism and spin-polarized superconductivity in Bernal bilayer graphene. Science 375, 774–778 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Zhang, Y. et al. Enhanced superconductivity in spin–orbit proximitized bilayer graphene. Nature 613, 268–273 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Li, C. et al. Tunable superconductivity in electron- and hole-doped Bernal bilayer graphene. Nature 631, 300–306 (2024).

  • Venderley, J. & Kim, E.-A. Density matrix renormalization group study of superconductivity in the triangular lattice Hubbard model. Phys. Rev. B 100, 060506 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hsu, Y.-T., Wu, F. & Das Sarma, S. Spin-valley locked instabilities in moiré transition metal dichalcogenides with conventional and higher-order Van Hove singularities. Phys. Rev. B 104, 195134 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Schrade, C. and Fu, L. Nematic, chiral and topological superconductivity in transition metal dichalcogenides. Phys. Rev. B 110, 035143 (2024).

  • Crépel, V., Guerci, D., Cano, J., Pixley, J. H. & Millis, A. Topological superconductivity in doped magnetic moiré semiconductors. Phys. Rev. Lett. 131, 056001 (2023).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Klebl, L., Fischer, A., Classen, L., Scherer, M. M. & Kennes, D. M. Competition of density waves and superconductivity in twisted tungsten diselenide. Phys. Rev. Res. 5, L012034 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Zhou, B. & Zhang, Y.-H. Chiral and nodal superconductors in the tJ model with valley contrasting flux on a triangular moiré lattice. Phys. Rev. B 108, 155111 (2023).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Zegrodnik, M. & Biborski, A. Mixed singlet-triplet superconducting state within the moiré tJU model applied to twisted bilayer WSe2. Phys. Rev. B 108, 064506 (2023).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Pack, J. et al. Charge-transfer contacts for the measurement of correlated states in high-mobility WSe2. Nat. Nanotechnol. 19, 948–954 (2024).

  • Yankowitz, M. et al. Emergence of superlattice Dirac points in graphene on hexagonal boron nitride. Nat. Phys. 8, 382–386 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Beasley, M. R., Mooij, J. E. & Orlando, T. P. Possibility of vortex-antivortex pair dissociation in two-dimensional superconductors. Phys. Rev. Lett. 42, 1165–1168 (1979).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zang, J., Wang, J., Cano, J. & Millis, A. J. Hartree-Fock study of the moiré Hubbard model for twisted bilayer transition metal dichalcogenides. Phys. Rev. B 104, 075150 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Crépel, V. & Millis, A. Bridging the small and large in twisted transition metal dicalcogenide homobilayers: A tight binding model capturing orbital interference and topology across a wide range of twist angles. Phys. Rev. Res. 6, 033127 (2024).

  • Liu, X. et al. Tuning electron correlation in magic-angle twisted bilayer graphene using Coulomb screening. Science 371, 1261–1265 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Holleis, L. et al. Nematicity and orbital depairing in superconducting Bernal bilayer graphene with strong spin orbit coupling. Preprint at https://arxiv.org/abs/2303.00742 (2023).

  • Yang, Z., Lange, M., Volodin, A., Szymczak, R. & Moshchalkov, V. V. Domain-wall superconductivity in superconductor–ferromagnet hybrids. Nat. Mater. 3, 793–798 (2004).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mukherjee, A. et al. Superconducting magic-angle twisted trilayer graphene hosts competing magnetic order and moiré inhomogeneities. Preprint at https://arxiv.org/abs/2406.02521 (2024).

  • Bardeen, J., Cooper, L. N. & Schrieffer, J. R. Theory of superconductivity. Phys. Rev. 108, 1175–1204 (1957).

    Article 
    ADS 
    MathSciNet 
    CAS 
    MATH 

    Google Scholar
     

  • Balents, L., Dean, C. R., Efetov, D. K. & Young, A. F. Superconductivity and strong correlations in moiré flat bands. Nat. Phys. 16, 725–733 (2020).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Wu, F., MacDonald, A. H. & Martin, I. Theory of phonon-mediated superconductivity in twisted bilayer graphene. Phys. Rev. Lett. 121, 257001 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Fischer, A., Klebl, L., Honerkamp, C. & Kennes, D. M. Spin-fluctuation-induced pairing in twisted bilayer graphene. Phys. Rev. B 103, L041103 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhai, H., Wang, F. & Lee, D.-H. Antiferromagnetically driven electronic correlations in iron pnictides and cuprates. Phys. Rev. B 80, 064517 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Scalapino, D. J. A common thread: the pairing interaction for unconventional superconductors. Rev. Mod. Phys. 84, 1383–1417 (2012).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Xia, Y. et al. Superconductivity in twisted bilayer WSe2. Nature https://doi.org/10.1038/s41586-024-08116-2 (2024).

  • Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Sternbach, A. J. et al. Quenched excitons in WSe2/α-RuCl3 heterostructures revealed by multimessenger nanoscopy. Nano Lett. 23, 5070–5075 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Xie, J. et al. Low resistance contact to P-type monolayer WSe2. Nano Lett. 24, 5937–5943 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Liu, S. et al. Two-step flux synthesis of ultrapure transition-metal dichalcogenides. ACS Nano 17, 16587–16596 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, K. et al. Van der Waals heterostructures with high accuracy rotational alignment. Nano Lett. 16, 1989–1995 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Guo, Y. Data related to “Superconductivity in 5.0° twisted bilayer WSe2”. Zenodo https://doi.org/10.5281/zenodo.13910339 (2024).

  • RELATED ARTICLES

    Most Popular

    Recent Comments