Thursday, March 6, 2025
No menu items!
HomeNatureSuperconductivity and quantized anomalous Hall effect in rhombohedral graphene

Superconductivity and quantized anomalous Hall effect in rhombohedral graphene

  • Qi, X.-L., Hughes, T. L. & Zhang, S.-C. Chiral topological superconductor from the quantum Hall state. Phys. Rev. B 82, 184516 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Clarke, D. J., Alicea, J. & Shtengel, K. Exotic non-Abelian anyons from conventional fractional quantum Hall states. Nat. Commun. 4, 1348 (2013).

    Article 
    ADS 
    PubMed 
    MATH 

    Google Scholar
     

  • Clarke, D. J., Alicea, J. & Shtengel, K. Exotic circuit elements from zero-modes in hybrid superconductor-quantum-Hall systems. Nat. Phys. 10, 877–882 (2014).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Mong, R. S. K. et al. Universal topological quantum computation from a superconductor-Abelian quantum Hall heterostructure. Phys. Rev. X 4, 011036 (2014).

    MATH 

    Google Scholar
     

  • Lian, B., Sun, X.-Q., Vaezi, A., Qi, X.-L. & Zhang, S.-C. Topological quantum computation based on chiral Majorana fermions. Proc. Natl Acad. Sci. USA 115, 10938–10942 (2018).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Lindner, N. H., Berg, E., Refael, G. & Stern, A. Fractionalizing Majorana fermions: non-Abelian statistics on the edges of Abelian quantum Hall states. Phys. Rev. X 2, 041002 (2012).


    Google Scholar
     

  • Lee, G.-H. et al. Inducing superconducting correlation in quantum Hall edge states. Nat. Phys. 13, 693–698 (2017).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Amet, F. et al. Supercurrent in the quantum Hall regime. Science 352, 966–969 (2016).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Vignaud, H. et al. Evidence for chiral supercurrent in quantum Hall Josephson junctions. Nature 624, 545–550 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Gul, O. et al. Andreev reflection in the fractional quantum Hall state. Phys. Rev. X 12, 021057 (2022).

    CAS 
    MATH 

    Google Scholar
     

  • Barrier, J. et al. One-dimensional proximity superconductivity in the quantum Hall regime. Nature 628, 741–745 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Uday, A. et al. Induced superconducting correlations in a quantum anomalous Hall insulator. Nat. Phys. 20, 1589–1595 (2024).

  • Atanov, O. et al. Proximity-induced quasi-one-dimensional superconducting quantum anomalous Hall state. Cell Rep. Phys. Sci. 5, 101762 (2024).

  • Tang, Y., Knapp, C. & Alicea, J. Vortex-enabled Andreev processes in quantum Hall–superconductor hybrids. Phys. Rev. B 106, 245411 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kurilovich, V. D., Raines, Z. M. & Glazman, L. I. Disorder-enabled Andreev reflection of a quantum Hall edge. Nat. Commun. 14, 2237 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Kurilovich, V. D. & Glazman, L. I. Criticality in the crossed Andreev reflection of a quantum Hall edge. Phys. Rev. X 13, 031027 (2023).

    CAS 
    MATH 

    Google Scholar
     

  • Ji, W. & Wen, X.-G. \(\frac{1}{2}({e}^{2}/h)\) Conductance plateau without 1D chiral majorana fermions. Phys. Rev. Lett. 120, 107002 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Polshyn, H. et al. Electrical switching of magnetic order in an orbital Chern insulator. Nature 588, 66–70 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu, Z. et al. Fractional quantum anomalous Hall effect in multilayer graphene. Nature 626, 759–764 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Zhang, Y. et al. Enhanced superconductivity in spin-orbit proximitized bilayer graphene. Nature 613, 268–273 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Patterson, C. L. et al. Superconductivity and spin canting in spin-orbit proximitized rhombohedral trilayer graphene. Preprint at http://arxiv.org/abs/2408.10190 (2024).

  • Yang, J. et al. Diverse impacts of spin-orbit coupling on superconductivity in rhombohedral graphene. Preprint at http://arxiv.org/abs/2408.09906 (2024).

  • Holleis, L. et al. Nematicity and orbital depairing in superconducting Bernal bilayer graphene. Nat. Phys. https://doi.org/10.1038/s41567-024-02776-7 (2025).

  • Li, C. et al. Tunable superconductivity in electron- and hole-doped Bernal bilayer graphene. Nature 631, 300–306 (2024).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Klitzing, K. V., Dorda, G. & Pepper, M. New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Phys. Rev. Lett. 45, 494–497 (1980).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Stepanov, P. et al. Competing zero-field Chern insulators in superconducting twisted bilayer graphene. Phys. Rev. Lett. 127, 197701 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Foutty, B. A. et al. Mapping twist-tuned multiband topology in bilayer WSe2. Science 384, 343–347 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Xia, Y. et al. Superconductivity in twisted bilayer WSe2. Nature 637, 833–838 (2025).

  • Guo, Y. et al. Superconductivity in 5.0° twisted bilayer WSe2. Nature 637, 839–845 (2025).

  • Li, T. et al. Quantum anomalous Hall effect from intertwined moiré bands. Nature 600, 641–646 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Park, H. et al. Observation of fractionally quantized anomalous Hall effect. Nature 622, 74–79 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Zhou, H. et al. Half- and quarter-metals in rhombohedral trilayer graphene. Nature 598, 429–433 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Zhou, H., Xie, T., Taniguchi, T., Watanabe, K. & Young, A. F. Superconductivity in rhombohedral trilayer graphene. Nature 598, 434–438 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, H. et al. Isospin magnetism and spin-polarized superconductivity in Bernal bilayer graphene. Science 375, 774–778 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Chen, G. et al. Tunable correlated Chern insulator and ferromagnetism in a moiré superlattice. Nature 579, 56–61 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Chen, G. et al. Signatures of tunable superconductivity in a trilayer graphene moiré superlattice. Nature 572, 215–219 (2019).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Xie, J. et al. Even- and odd-denominator fractional quantum anomalous Hall effect in graphene moire superlattices. Preprint at http://arxiv.org/abs/2405.16944 (2024).

  • Chen, G. et al. Evidence of a gate-tunable Mott insulator in a trilayer graphene moiré superlattice. Nat. Phys. 15, 237 (2019).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Zhang, F., Jung, J., Fiete, G. A., Niu, Q. & MacDonald, A. H. Spontaneous quantum hall states in chirally stacked few-layer graphene systems. Phys. Rev. Lett. 106, 156801 (2011).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Park, Y., Kim, Y., Chittari, B. L. & Jung, J. Topological flat bands in rhombohedral tetralayer and multilayer graphene on hexagonal boron nitride moiré superlattices. Phys. Rev. B 108, 155406 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Grover, S. et al. Chern mosaic and Berry-curvature magnetism in magic-angle graphene. Nat. Phys. 18, 885–892 (2022).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Han, T. et al. Orbital multiferroicity in pentalayer rhombohedral graphene. Nature 623, 41–47 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Su, R. et al. Moiré-driven topological electronic crystals in twisted graphene. Nature 637, 1084–1089 (2025).

  • Sha, Y. et al. Observation of a Chern insulator in crystalline ABCA-tetralayer graphene with spin-orbit coupling. Science 384, 414–419 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Zhu, J., Su, J.-J. & MacDonald, A. H. Voltage-controlled magnetic reversal in orbital chern insulators. Phys. Rev. Lett. 125, 227702 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Streda, P. Quantised Hall effect in a two-dimensional periodic potential. J. Phys. C: Solid State Phys. 15, L1299 (1982).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Khoo, J. Y., Morpurgo, A. F. & Levitov, L. On-demand spin-orbit interaction from which-layer tunability in bilayer graphene. Nano Lett. 17, 7003–7008 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Gmitra, M. & Fabian, J. Proximity effects in bilayer graphene on monolayer WSe2: field-effect spin valley locking, spin-orbit valve, and spin transistor. Phys. Rev. Lett. 119, 146401 (2017).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Island, J. O. et al. Spin-orbit-driven band inversion in bilayer graphene by the van der Waals proximity effect. Nature 571, 85–89 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Y. et al. Twist-programmable superconductivity in spin-orbit coupled bilayer graphene. Preprint at http://arxiv.org/abs/2408.10335 (2024).

  • Li, H. et al. Electrode-free anodic oxidation nanolithography of low-dimensional materials. Nano Lett. 18, 8011–8015 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Kim, H. et al. Imaging inter-valley coherent order in magic-angle twisted trilayer graphene. Nature 623, 942–948 (2023).

  • Li, H. et al. Global control of stacking-order phase transition by doping and electric field in few-layer graphene. Nano Lett. 20, 3106–3112 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Zibrov, A. A. et al. Tunable interacting composite fermion phases in a half-filled bilayer-graphene Landau level. Nature 549, 360–364 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Choi, Y. et al. Data for: Superconductivity and quantized anomalous Hall effects in rhombohedral graphene. Zenodo https://doi.org/10.5281/zenodo.14458163 (2024).

  • Weitz, R. T., Allen, M. T., Feldman, B. E., Martin, J. & Yacoby, A. Broken-symmetry states in doubly gated suspended bilayer graphene. Science 330, 812–816 (2010).

  • Bao, W. et al. Stacking-dependent band gap and quantum transport in trilayer graphene. Nat. Phys. 7, 948–952 (2011).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Velasco, J. et al. Transport spectroscopy of symmetry-broken insulating states in bilayer graphene. Nat. Nanotechnol. 7, 156–160 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Liu, K. et al. Spontaneous broken-symmetry insulator and metals in tetralayer rhombohedral graphene. Nat. Nanotechnol. 19, 188–195 (2023).

  • Han, T. et al. Correlated insulator and Chern insulators in pentalayer rhombohedral-stacked graphene. Nat. Nanotechnol. 19, 181–187 (2024).

  • Spanton, E. M. et al. Observation of fractional Chern insulators in a van der Waals heterostructure. Science 360, 62–66 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Xie, Y. et al. Fractional Chern insulators in magic-angle twisted bilayer graphene. Nature 600, 439–443 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Cai, J. et al. Signatures of fractional quantum anomalous hall states in twisted mote2. Nature 622, 63–68 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Shklovskii, B. I. & Efros, A. L. Electronic Properties of Doped Semiconductors (Springer, 1984).

  • Büttiker, M. Negative resistance fluctuations at resistance minima in narrow quantum hall conductors. Phys. Rev. B 38, 12724 (1988).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Kaverzin, A. A., Daimon, S., Kikkawa, T., Ohtsuki, T. & Saitoh, E. Negative longitudinal resistance of monolayer graphene in the quantum hall regime. Appl. Phys. Lett. 124, 203103 (2024).

  • RELATED ARTICLES

    Most Popular

    Recent Comments