Drozdov, A. P., Eremets, M. I., Troyan, I. A., Ksenofontov, V. & Shylin, S. I. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. Nature 525, 73–76 (2015).
Drozdov, A. P. et al. Superconductivity at 250 K in lanthanum hydride under high pressures. Nature 569, 528–531 (2019).
Kong, P. et al. Superconductivity up to 243 K in the yttrium-hydrogen system under high pressure. Nat. Commun. 12, 5075 (2021).
Ma, L. et al. High-temperature superconducting phase in clathrate calcium hydride CaH6 up to 215 K at a pressure of 172 GPa. Phys. Rev. Lett. 128, 167001 (2022).
Mozaffari, S. et al. Superconducting phase diagram of H3S under high magnetic fields. Nat. Commun. 10, 2522 (2019).
Minkov, V. S., Ksenofontov, V., Budko, S. L., Talantsev, E. F. & Eremets, M. I. Magnetic flux trapping in hydrogen-rich high-temperature superconductors. Nat. Phys. 19, 1293–1300 (2023).
Bhattacharyya, P. et al. Imaging the Meissner effect in hydride superconductors using quantum sensors. Nature 627, 73–79 (2024).
Einaga, M. et al. Crystal structure of the superconducting phase of sulfur hydride. Nat. Phys. 12, 835–838 (2016).
Nakao, H. et al. Superconductivity of pure H3S synthesized from elemental sulfur and hydrogen. J. Phys. Soc. Jpn. 88, 123701 (2019).
Minkov, V. S., Prakapenka, V. B., Greenberg, E. & Eremets, M. I. A boosted critical temperature of 166 K in superconducting D3S synthesized from elemental sulfur and hydrogen. Angew. Chem. Int. Ed. 59, 18970–18974 (2020).
Minkov, V. S. et al. Magnetic field screening in hydrogen-rich high-temperature superconductors. Nat. Commun. 13, 3194 (2022).
Ashcroft, N. W. Hydrogen dominant metallic alloys: high temperature superconductors? Phys. Rev. Lett. 92, 187002 (2004).
Duan, D. et al. Pressure-induced metallization of dense (H2S)2H2 with high-Tc superconductivity. Sci. Rep. 4, 6968 (2014).
Quan, Y. & Pickett, W. E. Van Hove singularities and spectral smearing in high-temperature superconducting H3S. Phys. Rev. B 93, 104526 (2016).
Sano, W., Koretsune, T., Tadano, T., Akashi, R. & Arita, R. Effect of Van Hove singularities on high-Tc superconductivity in H3S. Phys. Rev. B 93, 094525 (2016).
Errea, I. et al. Quantum hydrogen-bond symmetrization in the superconducting hydrogen sulfide system. Nature 532, 81–84 (2016).
Ummarino, G. A. & Bianconi, A. Multiband superconductivity in high-pressure sulfur hydrides. Condens. Matter 8, 69 (2023).
Zhang, J.-F. et al. Vital influence of hydrogen σ antibonding states on high-Tc superconductivity in SH3 under ultrahigh pressure. Phys. Rev. B 108, 094519 (2023).
Thomsen, S. R. & Goesten, M. G. Symmetry-shaped singularities in high-temperature superconductor H3S. J. Am. Chem. Soc. 146, 18298–18305 (2024).
Capitani, F. et al. Spectroscopic evidence of a new energy scale for superconductivity in H3S. Nat. Phys. 13, 859–863 (2017).
Cao, Z.-Y. et al. Probing superconducting gap in CeH9 under pressure. Preprint at https://arxiv.org/abs/2401.12682 (2024).
Du, F. et al. Tunneling spectroscopy at megabar pressures: determination of the superconducting gap in sulfur. Phys. Rev. Lett. 133, 036002 (2024).
Hirsch, J. E. Slope of the superconducting gap function in Bi2Sr2CaCu2O8+δ measured by vacuum tunneling spectroscopy. Phys. Rev. B 59, 11962–11973 (1999).
Brinkman, W. F., Dynes, R. C. & Rowell, J. M. Tunneling conductance of asymmetrical barriers. J. Appl. Phys. 41, 1915–1921 (1970).
Dynes, R. C., Narayanamurti, V. & Garno, J. P. Direct measurement of quasiparticle-lifetime broadening in a strong-coupled superconductor. Phys. Rev. Lett. 41, 1509–1512 (1978).
Wolf, E. L. Principles of Electron Tunneling Spectroscopy 2nd edn (Oxford Univ. Press, 2011).
Bardeen, J., Cooper, L. N. & Schrieffer, J. R. Microscopic theory of superconductivity. Phys. Rev. 106, 162–164 (1957).
Li, Y. et al. Dissociation products and structures of solid H2S at strong compression. Phys. Rev. B 93, 020103 (2016).
Laniel, D. et al. Novel sulfur hydrides synthesized at extreme conditions. Phys. Rev. B 102, 134109 (2020).
Flores-Livas, J. A., Sanna, A. & Gross, E. K. High temperature superconductivity in sulfur and selenium hydrides at high pressure. Eur. Phys. J. B 89, 63 (2016).
Bernstein, N., Hellberg, C. S., Johannes, M. D., Mazin, I. I. & Mehl, M. J. What superconducts in sulfur hydrides under pressure and why. Phys. Rev. B 91, 060511 (2015).
Errea, I. et al. High-pressure hydrogen sulfide from first principles: a strongly anharmonic phonon-mediated superconductor. Phys. Rev. Lett. 114, 157004 (2015).
Prescher, C. & Prakapenka, V. B. DIOPTAS: a program for reduction of two-dimensional X-ray diffraction data and data exploration. High Press. Res. 35, 223–230 (2015).
Hrubiak, R., Smith, J. S. & Shen, G. Multimode scanning X-ray diffraction microscopy for diamond anvil cell experiments. Rev. Sci. Instrum. 90, 025109 (2019).
Larson, A. C. & Von Dreele, R. B. General structure analysis system (GSAS). Los Alamos National Laboratory Report LAUR 86-748, 121–124 (1990).
Toby, B. H. EXPGUI, a graphical user interface for GSAS. J. Appl. Crystallogr. 34, 210–213 (2001).
Eremets, M. I. et al. Universal diamond edge Raman scale to 0.5 terapascal and implications for the metallization of hydrogen. Nat. Commun. 14, 907 (2023).
Johnson, J. B. Thermal agitation of electricity in conductors. Phys. Rev. 32, 97–109 (1928).
Nyquist, H. Thermal agitation of electric charge in conductors. Phys. Rev. 32, 110–113 (1928).
Voss, R. F. & Clarke, J. Flicker (1/f) noise: equilibrium temperature and resistance fluctuations. Phys. Rev. B 13, 556–573 (1976).
Blanter, Y. & Büttiker, M. Shot noise in mesoscopic conductors. Phys. Rep. 336, 1–166 (2000).
Birk, H., de Jong, M. J. M. & Schönenberger, C. Shot-noise suppression in the single-electron tunneling regime. Phys. Rev. Lett. 75, 1610–1613 (1995).
Das, V. D. & Jagadeesh, M. S. Tunneling in Al–Al2O3–Al MIM structures. Phys. Status Solidi (a) 66, 327–333 (1981).
Patino, E. J. & Kelkar, N. G. Experimental determination of tunneling characteristics and dwell times from temperature dependence of Al/Al2O3/Al junctions. Appl. Phys. Lett. 107, 253502 (2015).
Simmons, J. G. Generalized thermal J–V characteristic for the electric tunnel effect. J. Appl. Phys. 35, 2655–2658 (1964).
Sheng, P., Sichel, E. K. & Gittleman, J. I. Fluctuation-induced tunneling conduction in carbon-polyvinylchloride composites. Phys. Rev. Lett. 40, 1197–1200 (1978).