Friday, May 16, 2025
No menu items!
HomeNatureSuperconducting gap of H3S measured by tunnelling spectroscopy

Superconducting gap of H3S measured by tunnelling spectroscopy

  • Drozdov, A. P., Eremets, M. I., Troyan, I. A., Ksenofontov, V. & Shylin, S. I. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. Nature 525, 73–76 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Drozdov, A. P. et al. Superconductivity at 250 K in lanthanum hydride under high pressures. Nature 569, 528–531 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kong, P. et al. Superconductivity up to 243 K in the yttrium-hydrogen system under high pressure. Nat. Commun. 12, 5075 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma, L. et al. High-temperature superconducting phase in clathrate calcium hydride CaH6 up to 215 K at a pressure of 172 GPa. Phys. Rev. Lett. 128, 167001 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mozaffari, S. et al. Superconducting phase diagram of H3S under high magnetic fields. Nat. Commun. 10, 2522 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Minkov, V. S., Ksenofontov, V., Budko, S. L., Talantsev, E. F. & Eremets, M. I. Magnetic flux trapping in hydrogen-rich high-temperature superconductors. Nat. Phys. 19, 1293–1300 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Bhattacharyya, P. et al. Imaging the Meissner effect in hydride superconductors using quantum sensors. Nature 627, 73–79 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Einaga, M. et al. Crystal structure of the superconducting phase of sulfur hydride. Nat. Phys. 12, 835–838 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nakao, H. et al. Superconductivity of pure H3S synthesized from elemental sulfur and hydrogen. J. Phys. Soc. Jpn. 88, 123701 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Minkov, V. S., Prakapenka, V. B., Greenberg, E. & Eremets, M. I. A boosted critical temperature of 166 K in superconducting D3S synthesized from elemental sulfur and hydrogen. Angew. Chem. Int. Ed. 59, 18970–18974 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Minkov, V. S. et al. Magnetic field screening in hydrogen-rich high-temperature superconductors. Nat. Commun. 13, 3194 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ashcroft, N. W. Hydrogen dominant metallic alloys: high temperature superconductors? Phys. Rev. Lett. 92, 187002 (2004).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Duan, D. et al. Pressure-induced metallization of dense (H2S)2H2 with high-Tc superconductivity. Sci. Rep. 4, 6968 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Quan, Y. & Pickett, W. E. Van Hove singularities and spectral smearing in high-temperature superconducting H3S. Phys. Rev. B 93, 104526 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Sano, W., Koretsune, T., Tadano, T., Akashi, R. & Arita, R. Effect of Van Hove singularities on high-Tc superconductivity in H3S. Phys. Rev. B 93, 094525 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Errea, I. et al. Quantum hydrogen-bond symmetrization in the superconducting hydrogen sulfide system. Nature 532, 81–84 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ummarino, G. A. & Bianconi, A. Multiband superconductivity in high-pressure sulfur hydrides. Condens. Matter 8, 69 (2023).

    Article 

    Google Scholar
     

  • Zhang, J.-F. et al. Vital influence of hydrogen σ antibonding states on high-Tc superconductivity in SH3 under ultrahigh pressure. Phys. Rev. B 108, 094519 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Thomsen, S. R. & Goesten, M. G. Symmetry-shaped singularities in high-temperature superconductor H3S. J. Am. Chem. Soc. 146, 18298–18305 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Capitani, F. et al. Spectroscopic evidence of a new energy scale for superconductivity in H3S. Nat. Phys. 13, 859–863 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cao, Z.-Y. et al. Probing superconducting gap in CeH9 under pressure. Preprint at https://arxiv.org/abs/2401.12682 (2024).

  • Du, F. et al. Tunneling spectroscopy at megabar pressures: determination of the superconducting gap in sulfur. Phys. Rev. Lett. 133, 036002 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hirsch, J. E. Slope of the superconducting gap function in Bi2Sr2CaCu2O8+δ measured by vacuum tunneling spectroscopy. Phys. Rev. B 59, 11962–11973 (1999).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Brinkman, W. F., Dynes, R. C. & Rowell, J. M. Tunneling conductance of asymmetrical barriers. J. Appl. Phys. 41, 1915–1921 (1970).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Dynes, R. C., Narayanamurti, V. & Garno, J. P. Direct measurement of quasiparticle-lifetime broadening in a strong-coupled superconductor. Phys. Rev. Lett. 41, 1509–1512 (1978).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wolf, E. L. Principles of Electron Tunneling Spectroscopy 2nd edn (Oxford Univ. Press, 2011).

  • Bardeen, J., Cooper, L. N. & Schrieffer, J. R. Microscopic theory of superconductivity. Phys. Rev. 106, 162–164 (1957).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Li, Y. et al. Dissociation products and structures of solid H2S at strong compression. Phys. Rev. B 93, 020103 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Laniel, D. et al. Novel sulfur hydrides synthesized at extreme conditions. Phys. Rev. B 102, 134109 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Flores-Livas, J. A., Sanna, A. & Gross, E. K. High temperature superconductivity in sulfur and selenium hydrides at high pressure. Eur. Phys. J. B 89, 63 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Bernstein, N., Hellberg, C. S., Johannes, M. D., Mazin, I. I. & Mehl, M. J. What superconducts in sulfur hydrides under pressure and why. Phys. Rev. B 91, 060511 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Errea, I. et al. High-pressure hydrogen sulfide from first principles: a strongly anharmonic phonon-mediated superconductor. Phys. Rev. Lett. 114, 157004 (2015).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Prescher, C. & Prakapenka, V. B. DIOPTAS: a program for reduction of two-dimensional X-ray diffraction data and data exploration. High Press. Res. 35, 223–230 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hrubiak, R., Smith, J. S. & Shen, G. Multimode scanning X-ray diffraction microscopy for diamond anvil cell experiments. Rev. Sci. Instrum. 90, 025109 (2019).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Larson, A. C. & Von Dreele, R. B. General structure analysis system (GSAS). Los Alamos National Laboratory Report LAUR 86-748, 121–124 (1990).

  • Toby, B. H. EXPGUI, a graphical user interface for GSAS. J. Appl. Crystallogr. 34, 210–213 (2001).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Eremets, M. I. et al. Universal diamond edge Raman scale to 0.5 terapascal and implications for the metallization of hydrogen. Nat. Commun. 14, 907 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Johnson, J. B. Thermal agitation of electricity in conductors. Phys. Rev. 32, 97–109 (1928).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Nyquist, H. Thermal agitation of electric charge in conductors. Phys. Rev. 32, 110–113 (1928).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Voss, R. F. & Clarke, J. Flicker (1/f) noise: equilibrium temperature and resistance fluctuations. Phys. Rev. B 13, 556–573 (1976).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Blanter, Y. & Büttiker, M. Shot noise in mesoscopic conductors. Phys. Rep. 336, 1–166 (2000).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Birk, H., de Jong, M. J. M. & Schönenberger, C. Shot-noise suppression in the single-electron tunneling regime. Phys. Rev. Lett. 75, 1610–1613 (1995).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Das, V. D. & Jagadeesh, M. S. Tunneling in Al–Al2O3–Al MIM structures. Phys. Status Solidi (a) 66, 327–333 (1981).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Patino, E. J. & Kelkar, N. G. Experimental determination of tunneling characteristics and dwell times from temperature dependence of Al/Al2O3/Al junctions. Appl. Phys. Lett. 107, 253502 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Simmons, J. G. Generalized thermal JV characteristic for the electric tunnel effect. J. Appl. Phys. 35, 2655–2658 (1964).

    Article 
    ADS 

    Google Scholar
     

  • Sheng, P., Sichel, E. K. & Gittleman, J. I. Fluctuation-induced tunneling conduction in carbon-polyvinylchloride composites. Phys. Rev. Lett. 40, 1197–1200 (1978).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments