Thursday, July 17, 2025
No menu items!
HomeNatureSuper-resolution stimulated X-ray Raman spectroscopy

Super-resolution stimulated X-ray Raman spectroscopy

  • Rohringer, N. et al. Atomic inner-shell X-ray laser at 1.46 nanometres pumped by an X-ray free-electron laser. Nature 481, 488–491 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yoneda, H. et al. Atomic inner-shell laser at 1.5-ångström wavelength pumped by an X-ray free-electron laser. Nature 524, 446–449 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, Z. et al. Ultrafast self-induced X-ray transparency and loss of magnetic diffraction. Phys. Rev. Lett. 121, 137403 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Weninger, C. et al. Stimulated electronic X-ray Raman scattering. Phys. Rev. Lett. 111, 233902 (2013).

    ADS 
    PubMed 

    Google Scholar
     

  • Mukamel, S., Healion, D., Zhang, Y. & Biggs, J. D. Multidimensional attosecond resonant X-ray spectroscopy of molecules: lessons from the optical regime. Annu. Rev. Phys. Chem. 64, 101–127 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Rohringer, N. X-ray Raman scattering: a building block for nonlinear spectroscopy. Philos. Trans. R. Soc. A 377, 20170471 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • O’Neal, J. T. et al. Electronic population transfer via impulsive stimulated X-ray Raman scattering with attosecond soft-X-ray pulses. Phys. Rev. Lett. 125, 073203 (2020).

    ADS 
    PubMed 

    Google Scholar
     

  • Eichmann, U. et al. Photon-recoil imaging: expanding the view of nonlinear X-ray physics. Science 369, 1630–1633 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Möckl, L., Lamb, D. C. & Bräuchle, C. Super-resolved fluorescence microscopy: Nobel Prize in Chemistry 2014 for Eric Betzig, Stefan Hell, and William E. Moerner. Angew. Chem. Int. Ed. 53, 13972–13977 (2014).


    Google Scholar
     

  • Keefer, D. et al. Ultrafast X-ray probes of elementary molecular events. Annu. Rev. Phys. Chem. 74, 73–97 (2023).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Maiman, T. H. Stimulated optical radiation in ruby. Nature 187, 493–494 (1960).

    ADS 

    Google Scholar
     

  • Franken, P. A., Hill, A. E., Peters, C. W. & Weinreich, G. Generation of optical harmonics. Phys. Rev. Lett. 7, 118–119 (1961).

    ADS 

    Google Scholar
     

  • Shen, Y. R. & Bloembergen, N. Theory of stimulated Brillouin and Raman scattering. Phys. Rev. 137, A1787–A1805 (1965).

    ADS 
    MathSciNet 

    Google Scholar
     

  • Kelley, P. L. Self-focusing of optical beams. Phys. Rev. Lett. 15, 1005–1008 (1965).

    ADS 

    Google Scholar
     

  • Minck, R., Terhune, R. & Rado, W. Laser-stimulated Raman effect and resonant four-photon interactions in gases H2, D2, and CH4. Appl. Phys. Lett. 3, 181–184 (1963).

    ADS 
    CAS 

    Google Scholar
     

  • Giordmaine, J. A. & Kaiser, W. Light scattering by coherently driven lattice vibrations. Phys. Rev. 144, 676–688 (1966).

    ADS 
    CAS 

    Google Scholar
     

  • Von der Linde, D., Laubereau, A. & Kaiser, W. Molecular vibrations in liquids: direct measurement of the molecular dephasing time; determination of the shape of picosecond light pulses. Phys. Rev. Lett. 26, 954–957 (1971).

    ADS 

    Google Scholar
     

  • Dhar, L., Rogers, J. A. & Nelson, K. A. Time-resolved vibrational spectroscopy in the impulsive limit. Chem. Rev. 94, 157–193 (1994).

    CAS 

    Google Scholar
     

  • Kukura, P., McCamant, D. W. & Mathies, R. A. Femtosecond stimulated Raman spectroscopy. Annu. Rev. Phys. Chem. 58, 461–488 (2007).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Saar, B. G. et al. Video-rate molecular imaging in vivo with stimulated Raman scattering. Science 330, 1368–1370 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Emma, P. et al. First lasing and operation of an ångstrom-wavelength free-electron laser. Nat. Photon. 4, 641–647 (2010).

    ADS 
    CAS 

    Google Scholar
     

  • Decking, W. et al. A MHz-repetition-rate hard X-ray free-electron laser driven by a superconducting linear accelerator. Nat. Photon. 14, 391–397 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Duris, J. et al. Tunable isolated attosecond X-ray pulses with gigawatt peak power from a free-electron laser. Nat. Photon. 14, 30–36 (2020).

    MathSciNet 
    CAS 

    Google Scholar
     

  • Popmintchev, T. et al. Phase matching of high harmonic generation in the soft and hard X-ray regions of the spectrum. Proc. Natl Acad. Sci. USA 106, 10516–10521 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, K., Labeye, M., Ho, P. J., Gaarde, M. B. & Young, L. Resonant propagation of x rays from the linear to the nonlinear regime. Phys. Rev. A 102, 053113 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Young, L. et al. Femtosecond electronic response of atoms to ultra-intense X-rays. Nature 466, 56–61 (2010).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kanter, E. P. et al. Unveiling and driving hidden resonances with high-fluence, high-intensity X-ray pulses. Phys. Rev. Lett. 107, 233001 (2011).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Tanaka, S. & Mukamel, S. Coherent X-ray Raman spectroscopy: a nonlinear local probe for electronic excitations. Phys. Rev. Lett. 89, 043001 (2002).

    ADS 
    PubMed 

    Google Scholar
     

  • Gel’mukhanov, F. & Ågren, H. Resonant X-ray Raman scattering. Phys. Rep. 312, 87–330 (1999).

    ADS 

    Google Scholar
     

  • Weninger, C. & Rohringer, N. Stimulated resonant X-ray Raman scattering with incoherent radiation. Phys. Rev. A 88, 053421 (2013).

    ADS 

    Google Scholar
     

  • Kroll, T. et al. Observation of seeded Mn Kβ stimulated X-ray emission using two-color X-ray free-electron laser pulses. Phys. Rev. Lett. 125, 037404 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bergmann, U. Stimulated X-ray emission spectroscopy. Photosynth. Res. 162, 371–384 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Bonifacio, R., De Salvo, L., Pierini, P., Piovella, N. & Pellegrini, C. Spectrum, temporal structure, and fluctuations in a high-gain free-electron laser starting from noise. Phys. Rev. Lett. 73, 70–73 (1994).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Krinsky, S. & Gluckstern, R. L. Analysis of statistical correlations and intensity spiking in the self-amplified spontaneous-emission free-electron laser. Phys. Rev. Accel. Beams 6, 050701 (2003).

    ADS 

    Google Scholar
     

  • Frasinski, L. J., Codling, K. & Hatherly, P. A. Covariance mapping: a correlation method applied to multiphoton multiple ionization. Science 246, 1029–1031 (1989).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kimberg, V. & Rohringer, N. Stochastic stimulated electronic X-ray Raman spectroscopy. Struct. Dyn. 3, 034101 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kayser, Y. et al. Core-level nonlinear spectroscopy triggered by stochastic X-ray pulses. Nat. Commun. 10, 4761 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Driver, T. et al. Attosecond transient absorption spooktroscopy: a ghost imaging approach to ultrafast absorption spectroscopy. Phys. Chem. Chem. Phys. 22, 2704–2712 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Zhaunerchyk, V., Frasinski, L., Eland, J. H. & Feifel, R. Theory and simulations of covariance mapping in multiple dimensions for data analysis in high-event-rate experiments. Phys. Rev. A 89, 053418 (2014).

    ADS 

    Google Scholar
     

  • Müller, A. et al. Photoionization of Ne atoms and Ne+ ions near the K edge: precision spectroscopy and absolute cross-sections. Astrophys. J. 836, 166 (2017).

    ADS 

    Google Scholar
     

  • Gel’mukhanov, F., Odelius, M., Polyutov, S. P., Föhlisch, A. & Kimberg, V. Dynamics of resonant X-ray and Auger scattering. Rev. Mod. Phys. 93, 035001 (2021).

    ADS 

    Google Scholar
     

  • Liao, C.-T., Sandhu, A., Camp, S., Schafer, K. J. & Gaarde, M. B. Beyond the single-atom response in absorption line shapes: probing a dense, laser-dressed helium gas with attosecond pulse trains. Phys. Rev. Lett. 114, 143002 (2015).

    ADS 
    PubMed 

    Google Scholar
     

  • Vannucci, G. & Teich, M. C. Computer simulation of superposed coherent and chaotic radiation. Appl. Opt. 19, 548–553 (1980).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Pfeifer, T., Jiang, Y., Düsterer, S., Moshammer, R. & Ullrich, J. Partial-coherence method to model experimental free-electron laser pulse statistics. Opt. Lett. 35, 3441–3443 (2010).

    ADS 
    PubMed 

    Google Scholar
     

  • Li, K. et al. Ghost-imaging-enhanced noninvasive spectral characterization of stochastic X-ray free-electron-laser pulses. Commun. Phys. 5, 191 (2022).


    Google Scholar
     

  • Weninger, C. & Rohringer, N. Transient-gain photoionization X-ray laser. Phys. Rev. A 90, 063828 (2014).

    ADS 

    Google Scholar
     

  • Lutman, A. et al. Femtosecond X-ray free electron laser pulse duration measurement from spectral correlation function. Phys. Rev. Accel. Beams 15, 030705 (2012).

    ADS 

    Google Scholar
     

  • Miyawaki, J. et al. Design of ultrahigh energy resolution RIXS beamline at NanoTerasu. J. Phys. Conf. Ser. 2380, 012030 (2022).

    CAS 

    Google Scholar
     

  • Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Higley, D. J. et al. Stimulated resonant inelastic X-ray scattering in a solid. Commun. Phys. 5, 83 (2022).

    CAS 

    Google Scholar
     

  • Alexander, O. et al. Attosecond impulsive stimulated X-ray Raman scattering in liquid water. Sci. Adv. 10, eadp0841 (2024).

    PubMed 

    Google Scholar
     

  • Cavaletto, S. M., Keefer, D. & Mukamel, S. High temporal and spectral resolution of stimulated X-ray Raman signals with stochastic free-electron-laser pulses. Phys. Rev. X 11, 011029 (2021).

    CAS 

    Google Scholar
     

  • Dommach, M. et al. The photon beamline vacuum system of the European XFEL. J. Synchrotron Radiat. 28, 1229–1236 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mazza, T. et al. The beam transport system for the small quantum systems instrument at the European XFEL: optical layout and first commissioning results. J. Synchrotron Radiat. 30, 457–467 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Henke, B. L., Gullikson, E. M. & Davis, J. C. X-ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50-30,000 eV, Z = 1-92. At. Data Nucl. Data Tables 54, 181–342 (1993).

    ADS 

    Google Scholar
     

  • Li, K. Super-resolution stimulated X-ray Raman spectroscopy. Zenodo https://doi.org/10.5281/zenodo.15253560 (2025).

  • Nordgren, J. et al. Soft X-ray emission spectroscopy using monochromatized synchrotron radiation. Rev. Sci. Instrum. 60, 1690–1696 (1989).

    ADS 
    CAS 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments