Rohringer, N. et al. Atomic inner-shell X-ray laser at 1.46 nanometres pumped by an X-ray free-electron laser. Nature 481, 488–491 (2012).
Yoneda, H. et al. Atomic inner-shell laser at 1.5-ångström wavelength pumped by an X-ray free-electron laser. Nature 524, 446–449 (2015).
Chen, Z. et al. Ultrafast self-induced X-ray transparency and loss of magnetic diffraction. Phys. Rev. Lett. 121, 137403 (2018).
Weninger, C. et al. Stimulated electronic X-ray Raman scattering. Phys. Rev. Lett. 111, 233902 (2013).
Mukamel, S., Healion, D., Zhang, Y. & Biggs, J. D. Multidimensional attosecond resonant X-ray spectroscopy of molecules: lessons from the optical regime. Annu. Rev. Phys. Chem. 64, 101–127 (2013).
Rohringer, N. X-ray Raman scattering: a building block for nonlinear spectroscopy. Philos. Trans. R. Soc. A 377, 20170471 (2019).
O’Neal, J. T. et al. Electronic population transfer via impulsive stimulated X-ray Raman scattering with attosecond soft-X-ray pulses. Phys. Rev. Lett. 125, 073203 (2020).
Eichmann, U. et al. Photon-recoil imaging: expanding the view of nonlinear X-ray physics. Science 369, 1630–1633 (2020).
Möckl, L., Lamb, D. C. & Bräuchle, C. Super-resolved fluorescence microscopy: Nobel Prize in Chemistry 2014 for Eric Betzig, Stefan Hell, and William E. Moerner. Angew. Chem. Int. Ed. 53, 13972–13977 (2014).
Keefer, D. et al. Ultrafast X-ray probes of elementary molecular events. Annu. Rev. Phys. Chem. 74, 73–97 (2023).
Maiman, T. H. Stimulated optical radiation in ruby. Nature 187, 493–494 (1960).
Franken, P. A., Hill, A. E., Peters, C. W. & Weinreich, G. Generation of optical harmonics. Phys. Rev. Lett. 7, 118–119 (1961).
Shen, Y. R. & Bloembergen, N. Theory of stimulated Brillouin and Raman scattering. Phys. Rev. 137, A1787–A1805 (1965).
Kelley, P. L. Self-focusing of optical beams. Phys. Rev. Lett. 15, 1005–1008 (1965).
Minck, R., Terhune, R. & Rado, W. Laser-stimulated Raman effect and resonant four-photon interactions in gases H2, D2, and CH4. Appl. Phys. Lett. 3, 181–184 (1963).
Giordmaine, J. A. & Kaiser, W. Light scattering by coherently driven lattice vibrations. Phys. Rev. 144, 676–688 (1966).
Von der Linde, D., Laubereau, A. & Kaiser, W. Molecular vibrations in liquids: direct measurement of the molecular dephasing time; determination of the shape of picosecond light pulses. Phys. Rev. Lett. 26, 954–957 (1971).
Dhar, L., Rogers, J. A. & Nelson, K. A. Time-resolved vibrational spectroscopy in the impulsive limit. Chem. Rev. 94, 157–193 (1994).
Kukura, P., McCamant, D. W. & Mathies, R. A. Femtosecond stimulated Raman spectroscopy. Annu. Rev. Phys. Chem. 58, 461–488 (2007).
Saar, B. G. et al. Video-rate molecular imaging in vivo with stimulated Raman scattering. Science 330, 1368–1370 (2010).
Emma, P. et al. First lasing and operation of an ångstrom-wavelength free-electron laser. Nat. Photon. 4, 641–647 (2010).
Decking, W. et al. A MHz-repetition-rate hard X-ray free-electron laser driven by a superconducting linear accelerator. Nat. Photon. 14, 391–397 (2020).
Duris, J. et al. Tunable isolated attosecond X-ray pulses with gigawatt peak power from a free-electron laser. Nat. Photon. 14, 30–36 (2020).
Popmintchev, T. et al. Phase matching of high harmonic generation in the soft and hard X-ray regions of the spectrum. Proc. Natl Acad. Sci. USA 106, 10516–10521 (2009).
Li, K., Labeye, M., Ho, P. J., Gaarde, M. B. & Young, L. Resonant propagation of x rays from the linear to the nonlinear regime. Phys. Rev. A 102, 053113 (2020).
Young, L. et al. Femtosecond electronic response of atoms to ultra-intense X-rays. Nature 466, 56–61 (2010).
Kanter, E. P. et al. Unveiling and driving hidden resonances with high-fluence, high-intensity X-ray pulses. Phys. Rev. Lett. 107, 233001 (2011).
Tanaka, S. & Mukamel, S. Coherent X-ray Raman spectroscopy: a nonlinear local probe for electronic excitations. Phys. Rev. Lett. 89, 043001 (2002).
Gel’mukhanov, F. & Ågren, H. Resonant X-ray Raman scattering. Phys. Rep. 312, 87–330 (1999).
Weninger, C. & Rohringer, N. Stimulated resonant X-ray Raman scattering with incoherent radiation. Phys. Rev. A 88, 053421 (2013).
Kroll, T. et al. Observation of seeded Mn Kβ stimulated X-ray emission using two-color X-ray free-electron laser pulses. Phys. Rev. Lett. 125, 037404 (2020).
Bergmann, U. Stimulated X-ray emission spectroscopy. Photosynth. Res. 162, 371–384 (2024).
Bonifacio, R., De Salvo, L., Pierini, P., Piovella, N. & Pellegrini, C. Spectrum, temporal structure, and fluctuations in a high-gain free-electron laser starting from noise. Phys. Rev. Lett. 73, 70–73 (1994).
Krinsky, S. & Gluckstern, R. L. Analysis of statistical correlations and intensity spiking in the self-amplified spontaneous-emission free-electron laser. Phys. Rev. Accel. Beams 6, 050701 (2003).
Frasinski, L. J., Codling, K. & Hatherly, P. A. Covariance mapping: a correlation method applied to multiphoton multiple ionization. Science 246, 1029–1031 (1989).
Kimberg, V. & Rohringer, N. Stochastic stimulated electronic X-ray Raman spectroscopy. Struct. Dyn. 3, 034101 (2016).
Kayser, Y. et al. Core-level nonlinear spectroscopy triggered by stochastic X-ray pulses. Nat. Commun. 10, 4761 (2019).
Driver, T. et al. Attosecond transient absorption spooktroscopy: a ghost imaging approach to ultrafast absorption spectroscopy. Phys. Chem. Chem. Phys. 22, 2704–2712 (2020).
Zhaunerchyk, V., Frasinski, L., Eland, J. H. & Feifel, R. Theory and simulations of covariance mapping in multiple dimensions for data analysis in high-event-rate experiments. Phys. Rev. A 89, 053418 (2014).
Müller, A. et al. Photoionization of Ne atoms and Ne+ ions near the K edge: precision spectroscopy and absolute cross-sections. Astrophys. J. 836, 166 (2017).
Gel’mukhanov, F., Odelius, M., Polyutov, S. P., Föhlisch, A. & Kimberg, V. Dynamics of resonant X-ray and Auger scattering. Rev. Mod. Phys. 93, 035001 (2021).
Liao, C.-T., Sandhu, A., Camp, S., Schafer, K. J. & Gaarde, M. B. Beyond the single-atom response in absorption line shapes: probing a dense, laser-dressed helium gas with attosecond pulse trains. Phys. Rev. Lett. 114, 143002 (2015).
Vannucci, G. & Teich, M. C. Computer simulation of superposed coherent and chaotic radiation. Appl. Opt. 19, 548–553 (1980).
Pfeifer, T., Jiang, Y., Düsterer, S., Moshammer, R. & Ullrich, J. Partial-coherence method to model experimental free-electron laser pulse statistics. Opt. Lett. 35, 3441–3443 (2010).
Li, K. et al. Ghost-imaging-enhanced noninvasive spectral characterization of stochastic X-ray free-electron-laser pulses. Commun. Phys. 5, 191 (2022).
Weninger, C. & Rohringer, N. Transient-gain photoionization X-ray laser. Phys. Rev. A 90, 063828 (2014).
Lutman, A. et al. Femtosecond X-ray free electron laser pulse duration measurement from spectral correlation function. Phys. Rev. Accel. Beams 15, 030705 (2012).
Miyawaki, J. et al. Design of ultrahigh energy resolution RIXS beamline at NanoTerasu. J. Phys. Conf. Ser. 2380, 012030 (2022).
Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006).
Higley, D. J. et al. Stimulated resonant inelastic X-ray scattering in a solid. Commun. Phys. 5, 83 (2022).
Alexander, O. et al. Attosecond impulsive stimulated X-ray Raman scattering in liquid water. Sci. Adv. 10, eadp0841 (2024).
Cavaletto, S. M., Keefer, D. & Mukamel, S. High temporal and spectral resolution of stimulated X-ray Raman signals with stochastic free-electron-laser pulses. Phys. Rev. X 11, 011029 (2021).
Dommach, M. et al. The photon beamline vacuum system of the European XFEL. J. Synchrotron Radiat. 28, 1229–1236 (2021).
Mazza, T. et al. The beam transport system for the small quantum systems instrument at the European XFEL: optical layout and first commissioning results. J. Synchrotron Radiat. 30, 457–467 (2023).
Henke, B. L., Gullikson, E. M. & Davis, J. C. X-ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50-30,000 eV, Z = 1-92. At. Data Nucl. Data Tables 54, 181–342 (1993).
Li, K. Super-resolution stimulated X-ray Raman spectroscopy. Zenodo https://doi.org/10.5281/zenodo.15253560 (2025).
Nordgren, J. et al. Soft X-ray emission spectroscopy using monochromatized synchrotron radiation. Rev. Sci. Instrum. 60, 1690–1696 (1989).