Wednesday, January 7, 2026
No menu items!
HomeNatureSunyaev–Zeldovich detection of hot intracluster gas at redshift 4.3

Sunyaev–Zeldovich detection of hot intracluster gas at redshift 4.3

  • Bryan, G. L. & Norman, M. L. Statistical properties of X-ray clusters: analytic and numerical comparisons. Astrophys. J. 495, 80–99 (1998).

    Article 
    ADS 

    Google Scholar
     

  • Chiang, Y.-K., Makiya, R., Ménard, B. & Komatsu, E. The cosmic thermal history probed by Sunyaev–Zeldovich effect tomography. Astrophys. J. 902, 56 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Li, Q. et al. THE THREE HUNDRED Project: the evolution of physical baryon profiles. Mon. Not. R. Astron. Soc. 523, 1228–1246 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Rohr, E. et al. The cooler past of the intracluster medium in TNG-cluster. Mon. Not. R. Astron. Soc. 536, 1226–1250 (2025).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Mantz, A. B. et al. The XXL Survey. XVII. X-ray and Sunyaev–Zel’dovich properties of the redshift 2.0 galaxy cluster XLSSC 122. Astron. Astrophys. 620, 2 (2018).

    Article 

    Google Scholar
     

  • Gobat, R. et al. Sunyaev-Zel’dovich detection of the galaxy cluster Cl J1449+0856 at z = 1.99: the pressure profile in uv space. Astron. Astrophys. 629, 104 (2019).

    Article 

    Google Scholar
     

  • Di Mascolo, L. et al. Forming intracluster gas in a galaxy protocluster at a redshift of 2.16. Nature 615, 809–812 (2023).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miller, T. B. et al. A massive core for a cluster of galaxies at a redshift of 4.3. Nature 556, 469–472 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chapman, S. C. et al. Brightest cluster galaxy formation in the z = 4.3 protocluster SPT 2349-56: discovery of a radio-loud active galactic nucleus. Astrophys. J. 961, 120 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Zhou, D. et al. A large molecular gas reservoir in the protocluster SPT2349-56 at z = 4.3. Astrophys. J. Lett. 982, 17 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Chapman, S. C. et al. An overabundance of radio-AGN in the SPT2349-56 protocluster: preheating the intra-cluster medium. Preprint at https://arxiv.org/abs/2511.17814 (2025).

  • Sunyaev, R. A. & Zeldovich, Y. B. Formation of clusters of galaxies; protocluster fragmentation and intergalactic gas heating. Astron. Astrophys. 20, 189 (1972).

    ADS 

    Google Scholar
     

  • Sunyaev, R. A. & Zeldovich, I. B. Microwave background radiation as a probe of the contemporary structure and history of the universe. Annu. Rev. Astron. Astrophys. 18, 537–560 (1980).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Voit, G. M. Tracing cosmic evolution with clusters of galaxies. Rev. Mod. Phys. 77, 207–258 (2005).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wang, G. C. P. et al. Overdensities of submillimetre-bright sources around candidate protocluster cores selected from the South Pole Telescope survey. Mon. Not. R. Astron. Soc. 508, 3754–3770 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hill, R. et al. Megaparsec-scale structure around the protocluster core SPT2349-56 at z = 4.3. Mon. Not. R. Astron. Soc. 495, 3124–3159 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • McCarthy, I. G., Babul, A., Bower, R. G. & Balogh, M. L. Towards a holistic view of the heating and cooling of the intracluster medium. Mon. Not. R. Astron. Soc. 386, 1309–1331 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Henden, N. A., Puchwein, E. & Sijacki, D. The redshift evolution of X-ray and Sunyaev-Zel’dovich scaling relations in the FABLE simulations. Mon. Not. R. Astron. Soc. 489, 2439–2470 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bennett, J. S., Sijacki, D., Costa, T., Laporte, N. & Witten, C. The growth of the gargantuan black holes powering high-redshift quasars and their impact on the formation of early galaxies and protoclusters. Mon. Not. R. Astron. Soc. 527, 1033–1054 (2024).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Carlstrom, J. E., Holder, G. P. & Reese, E. D. Cosmology with the Sunyaev-Zel’dovich effect. Annu. Rev. Astron. Astrophys. 40, 643–680 (2002).

    Article 
    ADS 

    Google Scholar
     

  • Mroczkowski, T. et al. Astrophysics with the spatially and spectrally resolved Sunyaev-Zeldovich effects. A millimetre/submillimetre probe of the warm and hot universe. Space Sci. Rev. 215, 17 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Spacek, A., Scannapieco, E., Cohen, S., Joshi, B. & Mauskopf, P. Constraining AGN feedback in massive ellipticals with South Pole telescope measurements of the thermal Sunyaev-Zel’dovich effect. Astrophys. J. 819, 128 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Arnaud, M. et al. The universal galaxy cluster pressure profile from a representative sample of nearby systems (REXCESS) and the YSZM500 relation. Astron. Astrophys. 517, 92 (2010).

    Article 

    Google Scholar
     

  • Maughan, B. J., Giles, P. A., Randall, S. W., Jones, C. & Forman, W. R. Self-similar scaling and evolution in the galaxy cluster X-ray luminosity-temperature relation. Mon. Not. R. Astron. Soc. 421, 1583–1602 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Planck Collaboration. Planck 2013 results. XX. Cosmology from Sunyaev-Zeldovich cluster counts. Astron. Astrophys. 571, 20 (2014).

    Article 

    Google Scholar
     

  • McDonald, M. et al. The remarkable similarity of massive galaxy clusters from z ~ 0 to z ~ 1.9. Astrophys. J. 843, 28 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Mostoghiu, R. et al. The Three Hundred Project: the evolution of galaxy cluster density profiles. Mon. Not. R. Astron. Soc. 483, 3390–3403 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Marrone, D. P. et al. LoCuSS: the Sunyaev-Zel’dovich effect and weak-lensing mass scaling relation. Astrophys. J. 754, 119 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Bocquet, S. et al. Cluster cosmology constraints from the 2500 deg2 SPT-SZ survey: inclusion of weak gravitational lensing data from Magellan and the Hubble Space Telescope. Astrophys. J. 878, 55 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bigwood, L., Bourne, M. A., Iršič, V., Amon, A. & Sijacki, D. The case for large-scale AGN feedback in galaxy formation simulations: insights from XFABLE. Mon. Not. R. Astron. Soc. 542, 3206–3230 (2025).

  • Lucie-Smith, L. et al. Cosmological feedback from a halo assembly perspective. Phys. Rev. D. 112, 063541 (2025).

  • Nagarajan, A. et al. Weak-lensing mass calibration of the Sunyaev-Zel’dovich effect using APEX-SZ galaxy clusters. Mon. Not. R. Astron. Soc. 488, 1728–1759 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Andreon, S. et al. Witnessing the intracluster medium assembly at the cosmic noon in JKCS 041. Mon. Not. R. Astron. Soc. 522, 4301–4309 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • van Marrewijk, J. et al. XLSSC 122 caught in the act of growing up: spatially resolved SZ observations of a z = 1.98 galaxy cluster. Astron. Astrophys. 689, 41 (2024).

    Article 

    Google Scholar
     

  • Remus, R.-S., Dolag, K. & Dannerbauer, H. The young and the wild: what happens to protoclusters forming at redshift z ≈ 4? Astrophys. J. 950, 191 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Aljamal, E. et al. Mass proxy quality of massive halo properties in the IllustrisTNG and FLAMINGO simulations: I. Hot gas. Mon. Not. R. Astron. Soc. 544, 67–94 (2025).

  • Bassini, L. et al. The DIANOGA simulations of galaxy clusters: characterising star formation in protoclusters. Astron. Astrophys. 642, 37 (2020).

    Article 

    Google Scholar
     

  • Lim, S. et al. Is there enough star formation in simulated protoclusters? Mon. Not. R. Astron. Soc. 501, 1803–1822 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hlavacek-Larrondo, J. et al. X-ray cavities in a sample of 83 SPT-selected clusters of galaxies: tracing the evolution of AGN feedback in clusters of galaxies out to z = 1.2. Astrophys. J. 805, 35 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Valentino, F. et al. A giant Lyα nebula in the core of an X-ray cluster at z = 1.99: implications for early energy injection. Astrophys. J. 829, 53 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Cielo, S., Babul, A., Antonuccio-Delogu, V., Silk, J. & Volonteri, M. Feedback from reorienting AGN jets. I. Jet-ICM coupling, cavity properties and global energetics. Astron. Astrophys. 617, 58 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Heckman, T. M. & Best, P. N. A global inventory of feedback. Galaxies 11, 21 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Heckman, T. M., Roy, N., Best, P. N. & Kondapally, R. Mergers, radio jets, and quenching star formation in massive galaxies: quantifying their synchronized cosmic evolution and assessing the energetics. Astrophys. J. 977, 125 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Rennehan, D., Babul, A., Moa, B. & Davé, R. The OBSIDIAN model: three regimes of black hole feedback. Mon. Not. R. Astron. Soc. 532, 4793–4809 (2024).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Huško, F. et al. A hybrid active galactic nucleus feedback model with spinning black holes, winds and jets. Preprint at arxiv.org/abs/2509.05179 (2025)

  • Begelman, M. C. & Cioffi, D. F. Overpressured cocoons in extragalactic radio sources. Astrophys. J. Lett. 345, 21 (1989).

    Article 
    ADS 

    Google Scholar
     

  • Nesvadba, N. P. H., Lehnert, M. D., De Breuck, C., Gilbert, A. M. & van Breugel, W. Evidence for powerful AGN winds at high redshift: dynamics of galactic outflows in radio galaxies during the “Quasar Era”. Astron. Astrophys. 491, 407–424 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Fabian, A. C. Observational evidence of active galactic nuclei feedback. Annu. Rev. Astron. Astrophys. 50, 455–489 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chadayammuri, U., Tremmel, M., Nagai, D., Babul, A. & Quinn, T. Fountains and storms: the effects of AGN feedback and mergers on the evolution of the intracluster medium in the ROMULUSC simulation. Mon. Not. R. Astron. Soc. 504, 3922–3937 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Grayson, S., Scannapieco, E. & Davé, R. Distinguishing active galactic nuclei feedback models with the thermal Sunyaev–Zel’dovich effect. Astrophys. J. 957, 17 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Altamura, E. et al. EAGLE-like simulation models do not solve the entropy core problem in groups and clusters of galaxies. Mon. Not. R. Astron. Soc. 520, 3164–3186 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Gardner, A., Baxter, E., Raghunathan, S., Cui, W. & Ceverino, D. Prospects for studying the mass and gas in protoclusters with future CMB observations. Open J. Astrophys. 7, 2 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Vogelsberger, M. et al. The uniformity and time-invariance of the intra-cluster metal distribution in galaxy clusters from the IllustrisTNG simulations. Mon. Not. R. Astron. Soc. 474, 2073–2093 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Huško, F., Lacey, C. G., Schaye, J., Nobels, F. S. J. & Schaller, M. Winds versus jets: a comparison between black hole feedback modes in simulations of idealized galaxy groups and clusters. Mon. Not. R. Astron. Soc. 527, 5988–6020 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Mantz, A. B. et al. The XXL Survey. V. Detection of the Sunyaev-Zel’dovich effect of the redshift 1.9 galaxy cluster XLSSU J021744.1-034536 with CARMA. Astrophys. J. 794, 157 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Planck Collaboration. Planck 2015 results. XIII. Cosmological parameters. Astron. Astrophys. 594, 13 (2016).

    Article 

    Google Scholar
     

  • Bushouse, H. et al. JWST calibration pipeline. Zenodo https://doi.org/10.5281/zenodo.6984365 (2025).

  • Bradley, L. et al. Astropy/photutils: 2.0.2. Zenodo https://doi.org/10.5281/zenodo.13989456 (2024).

  • Fujimoto, S. et al. ALMA census of faint 1.2 mm sources down to ~0.02 mJy: extragalactic background light and dust-poor, high-z galaxies. Astrophys. J. Suppl. Ser. 222, 1 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Fujimoto, S. et al. ALMA Lensing Cluster Survey: deep 1.2 mm number counts and infrared luminosity functions at z = 1–8. Astrophys. J. Suppl. Ser. 275, 36 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Tazzari, M. Mtazzari/uvplot (v0.1.1). Zenodo https://doi.org/10.5281/zenodo.1003113 (2017).

  • Wang, T. et al. Discovery of a galaxy cluster with a violently starbursting core at z = 2.506. Astrophys. J. 828, 56 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Grishin, K. A. et al. Spectroscopic confirmation of the galaxy clusters CARLA J0950+2743 at z = 2.363 and CARLA-Ser J0950+2743 at z = 2.243. Astron. Astrophys. 693, 1 (2025).

    Article 

    Google Scholar
     

  • Travascio, A. et al. X-ray view of a massive node of the cosmic web at z = 3 II. Discovery of extended X-ray emission around a hyperluminous QSO. Preprint at arxiv.org/abs/2508.20074 (2025).

  • Diemer, B. COLOSSUS: a Python toolkit for cosmology, large-scale structure, and dark matter halos. Astrophys. J. Suppl. Ser. 239, 35 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Diemer, B. & Joyce, M. An accurate physical model for halo concentrations. Astrophys. J. 871, 168 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hill, R. et al. Rapid build-up of the stellar content in the protocluster core SPT2349-56 at z = 4.3. Mon. Not. R. Astron. Soc. 512, 4352–4377 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Vito, F. et al. Fast supermassive black hole growth in the SPT2349–56 protocluster at z = 4.3. Astron. Astrophys. 689, A130 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Heckman, T. M. & Best, P. N. The coevolution of galaxies and supermassive black holes: insights from surveys of the contemporary Universe. Annu. Rev. Astron. Astrophys. 52, 589–660 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Nusser, A., Silk, J. & Babul, A. Suppressing cluster cooling flows by self-regulated heating from a spatially distributed population of active galactic nuclei. Mon. Not. R. Astron. Soc. 373, 739–746 (2006).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Jennings, F. J., Babul, A., Davé, R., Cui, W. & Rennehan, D. HYENAS: X-ray bubbles and cavities in the intragroup medium. Mon. Not. R. Astron. Soc. 536, 145–165 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Kondapally, R. et al. Cosmic evolution of radio-AGN feedback: confronting models with data. Mon. Not. R. Astron. Soc. 523, 5292–5305 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Venkateshwaran, A. et al. Kinematic analysis of z = 4.3 galaxies in the SPT2349–56 protocluster core. Astrophys. J. 977, 161 (2024).

  • Spilker, J. S. et al. Ubiquitous molecular outflows in z > 4 massive, dusty galaxies. II. Momentum-driven winds powered by star formation in the early Universe. Astrophys. J. 905, 86 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Duan, X. & Guo, F. On the energy coupling efficiency of AGN outbursts in galaxy clusters. Astrophys. J. 896, 114 (2020).

    Article 
    ADS 

    Google Scholar
     

  • O’Dea, C. P. The compact steep-spectrum and gigahertz peaked-spectrum radio sources. Publ. Astron. Soc. Pac. 110, 493–532 (1998).

    Article 
    ADS 

    Google Scholar
     

  • Yamada, M., Sugiyama, N. & Silk, J. The Sunyaev-Zeldovich effect by cocoons of radio galaxies. Astrophys. J. 522, 66–73 (1999).

    Article 
    ADS 

    Google Scholar
     

  • Bromberg, O., Nakar, E., Piran, T. & Sari, R. The propagation of relativistic jets in external media. Astrophys. J. 740, 100 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Cen, R. Global preventive feedback of powerful radio jets on galaxy formation. Proc. Natl Acad. Sci. USA 121, 2402435121 (2024).

    Article 
    MathSciNet 

    Google Scholar
     

  • Boselli, A., Fossati, M. & Sun, M. Ram pressure stripping in high-density environments. Astron. Astrophys. Rev. 30, 3 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Astropy Collaboration. The Astropy Project: sustaining and growing a community-oriented open-source project and the latest major release (v5.0) of the core package. Astrophys. J. 935, 167 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Ginsburg, A. et al. astroquery: an astronomical web-querying package in Python. Astron. J. 157, 98 (2019).

    Article 
    ADS 

    Google Scholar
     

  • CASA Team. CASA, the common astronomy software applications for radio astronomy. Publ. Astron. Soc. Pac. 134, 114501 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Hunter, J. D. Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007).

    Article 

    Google Scholar
     

  • Harris, C. R. et al. Array programming with NumPy. Nature 585, 357–362 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • The pandas development team. pandas-dev/pandas: Pandas. Zenodo https://doi.org/10.5281/zenodo.3509134 (2025).

  • Ginsburg, A. et al. radio-astro-tools/spectral-cube: v.0.4.4. Zenodo https://doi.org/10.5281/zenodo.2573901 (2019).

  • RELATED ARTICLES

    Most Popular

    Recent Comments