Sunday, August 24, 2025
No menu items!
HomeNatureSuFEx-based antitubercular compound irreversibly inhibits Pks13

SuFEx-based antitubercular compound irreversibly inhibits Pks13

  • Global Tuberculosis Report 2023 (World Health Organization, 2023); www.who.int/teams/global-programme-on-tuberculosis-and-lung-health/tb-reports/global-tuberculosis-report-2023.

  • Dong, J., Krasnova, L., Finn, M. G. & Sharpless, K. B. Sulfur(VI) fluoride exchange (SuFEx): another good reaction for click chemistry. Angew. Chem. Int. Ed. 53, 9430–9448 (2014).

    CAS 

    Google Scholar
     

  • The Lancet Infectious Diseases. Tuberculosis at the United Nations: a missed chance. Lancet Infect. Dis. 18, 1161 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Gumbo, T. et al. Isoniazid’s bactericidal activity ceases because of the emergence of resistance, not depletion of Mycobacterium tuberculosis in the log phase of growth. J. Infect. Dis. 195, 194–201 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Neres, J. et al. Structural basis for benzothiazinone-mediated killing of Mycobacterium tuberculosis. Sci. Transl. Med. 4, 150ra121 (2012).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hillebrand, L., Liang, X. J., Serafim, R. A. M. & Gehringer, M. Emerging and re-emerging warheads for targeted covalent inhibitors: an update. J. Med. Chem. 67, 7668–7758 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Rozwarski, D. A., Grant, G. A., Barton, D. H., Jacobs, W. R. & Sacchettini, J. C. Modification of the NADH of the isoniazid target (InhA) from Mycobacterium tuberculosis. Science 279, 98–102 (1998).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Barrow, A. S. et al. The growing applications of SuFEx click chemistry. Chem. Soc. Rev. 48, 4731–4758 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Gu, C. et al. Chemical proteomics with sulfonyl fluoride probes reveals selective labeling of functional tyrosines in glutathione transferases. Chem. Biol. 20, 541–548 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Gilbert, K. E. et al. Profiling sulfur(VI) fluorides as reactive functionalities for chemical biology tools and expansion of the ligandable proteome. ACS Chem. Biol. 18, 285–295 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moss, D. E. et al. A randomized phase I study of methanesulfonyl fluoride, an irreversible cholinesterase inhibitor, for the treatment of Alzheimer’s disease. Br. J. Clin. Pharmacol. 75, 1231–1239 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Chen, W. et al. Arylfluorosulfates inactivate intracellular lipid binding protein(s) through chemoselective SuFEx reaction with a binding site Tyr residue. J. Am. Chem. Soc. 138, 7353–7364 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, J. et al. Identification of simple arylfluorosulfates as potent agents against resistant bacteria. Proc. Natl Acad. Sci. USA 118, e2103513118 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mukherjee, H. et al. A study of the reactivity of S(VI)-F containing warheads with nucleophilic amino-acid side chains under physiological conditions. Org. Biomol. Chem. 15, 9685–9695 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Baggio, C. et al. Aryl-fluorosulfate-based lysine covalent pan-inhibitors of apoptosis protein (IAP) antagonists with cellular efficacy. J. Med. Chem. 62, 9188–9200 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martín-Gago, P. & Olsen, C. A. Arylfluorosulfate-based electrophiles for covalent protein labeling: a new addition to the arsenal. Angew. Chem. Int. Ed. Engl. 58, 957–966 (2019).

    PubMed 

    Google Scholar
     

  • Huang, H. & Jones, L. H. Covalent drug discovery using sulfur(VI) fluoride exchange warheads. Expert Opin. Drug Discov. 18, 725–735 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Bolding, J. E. et al. Aryl fluorosulfate based inhibitors that covalently target the SIRT5 lysine deacylase. Angew. Chem. Int. Ed. Engl. 61, e202204565 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alboreggia, G. et al. Covalent targeting of histidine residues with aryl fluorosulfates: application to Mcl-1 BH3 mimetics. J. Med. Chem. 67, 20214–20223 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fadeyi, O. O. et al. Covalent enzyme inhibition through fluorosulfate modification of a noncatalytic serine residue. ACS Chem. Biol. 12, 2015–2020 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gambini, L. et al. Covalent inhibitors of protein-protein interactions targeting lysine, tyrosine, or histidine residues. J. Med. Chem. 62, 5616–5627 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gavalda, S. et al. The Pks13/FadD32 crosstalk for the biosynthesis of mycolic acids in Mycobacterium tuberculosis. J. Biol. Chem. 284, 19255–19264 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wilson, R. et al. Antituberculosis thiophenes define a requirement for Pks13 in mycolic acid biosynthesis. Nat. Chem. Biol. 9, 499–506 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aggarwal, A. et al. Development of a novel lead that targets M. tuberculosis polyketide synthase 13. Cell 170, 249–259 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gavalda, S. et al. The polyketide synthase Pks13 catalyzes a novel mechanism of lipid transfer in mycobacteria. Chem. Biol. 21, 1660–1669 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Kim, S. K. et al. Structure and dynamics of the essential endogenous mycobacterial polyketide synthase Pks13. Nat. Struct. Mol. Biol. 30, 296–308 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, W. et al. Structure-based optimization of coumestan derivatives as polyketide synthase 13-thioesterase(Pks13-TE) inhibitors with improved hERG profiles for Mycobacterium tuberculosis treatment. J. Med. Chem. 65, 13240–13252 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Lun, S. et al. Therapeutic potential of coumestan Pks13 inhibitors for tuberculosis. Antimicrob. Agents Chemother. 95, e02190–20 (2023).

    PubMed 

    Google Scholar
     

  • Wilson, C. et al. Optimization of TAM16, a benzofuran that inhibits the thioesterase activity of Pks13; evaluation toward a preclinical candidate for a novel antituberculosis clinical target. J. Med. Chem. 65, 409–423 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Krieger, I. V. et al. Inhibitors of the thioesterase activity of Mycobacterium tuberculosis Pks13 discovered using DNA-encoded chemical library screening. ACS Infect. Dis. 10, 1561–1575 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, B. et al. Synthesis and structure–activity relationships of aryl fluorosulfate-based inhibitors as novel antitubercular agents. Bioorg. Med. Chem. Lett. 98, 129596 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cook, G. M., Greening, C., Hards, K. & Berney, M. in Advances in Microbial Physiology Vol. 65 (ed. Poole, R. K.) 1–62 (Elsevier, 2014).

  • Hu, Y., Coates, A. R. & Mitchison, D. A. Sterilising action of pyrazinamide in models of dormant and rifampicin-tolerant Mycobacterium tuberculosis. Int. J. Tuberc. Lung Dis. 10, 317–322 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • Hariguchi, N. et al. OPC-167832, a novel carbostyril derivative with potent antituberculosis activity as a DprE1 inhibitor. Antimicrob. Agents Chemother. 64, e02020–19 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bergeret, F. et al. Biochemical and structural study of the atypical acyltransferase domain from the mycobacterial polyketide synthase Pks13. J. Biol. Chem. 287, 33675–33690 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Conradie, F. et al. Bedaquiline-pretomanid-linezolid regimens for drug-resistant tuberculosis. N. Engl. J. Med. 387, 810–823 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lenaerts, A. J. et al. Preclinical testing of the nitroimidazopyran PA-824 for activity against Mycobacterium tuberculosis in a series of in vitro and in vivo models. Antimicrob. Agents Chemother. 49, 2294–2301 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rosenthal, I. M. et al. Dose-ranging comparison of rifampin and rifapentine in two pathologically distinct murine models of tuberculosis. Antimicrob. Agents Chemother. 56, 4331–4340 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, S.-Y. et al. Bactericidal and sterilizing activity of a novel regimen with bedaquiline, pretomanid, moxifloxacin, and pyrazinamide in a murine model of tuberculosis. Antimicrob. Agents Chemother. 61, e00913–e00917 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yamamoto, K., Nakata, N., Mukai, T., Kawagishi, I. & Ato, M. Coexpression of MmpS5 and MmpL5 contributes to both efflux transporter MmpL5 trimerization and drug resistance in Mycobacterium tuberculosis. mSphere 6, e00518–e00520 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cho, S., Lee, H. S. & Franzblau, S. G. in Mycobacteria Protocols (eds Parish, T. et al.) 281–292 (Springer, 2015).

  • Pankey, G. A. & Sabath, L. D. Clinical relevance of bacteriostatic versus bactericidal mechanisms of action in the treatment of gram‐positive bacterial infections. Clin. Infect. Dis. 38, 864–870 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • Lechartier, B., Hartkoorn, R. C. & Cole, S. T. In vitro combination studies of benzothiazinone lead compound BTZ043 against Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 56, 5790–5793 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hall, M. J., Middleton, R. F. & Westmacott, D. The fractional inhibitory concentration (FIC) index as a measure of synergy. J. Antimicrob. Chemother. 11, 427–433 (1983).

    CAS 
    PubMed 

    Google Scholar
     

  • Larsen, M. H., Biermann, K., Tandberg, S., Hsu, T. & Jacobs, W. R. Genetic manipulation of Mycobacterium tuberculosis. Curr. Protoc. Microbiol. 6, 10A.2.1–10A.2.21 (2007).

  • Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eschenfeldt, W. H., Lucy, S., Millard, C. S., Joachimiak, A. & Mark, I. D. in High Throughput Protein Expression and Purification Vol. 498 (ed. Doyle, S. A.) 105–115 (Humana, 2009).

  • Otwinowski, Z. & Minor, W. in Methods in Enzymology Vol. 276 (eds Abelson, J. N. et al.) 307–326 (Elsevier, 1997).

  • Winn, M. D. et al. Overview of the CCP 4 suite and current developments. Acta Crystallogr. D 67, 235–242 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in. Phenix. Acta Crystallogr. Sect. Struct. Biol. 75, 861–877 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • Abagyan, R., Totrov, M. & Kuznetsov, D. ICM—a new method for protein modeling and design: applications to docking and structure prediction from the distorted native conformation. J. Comput. Chem. 15, 488–506 (1994).

    CAS 

    Google Scholar
     

  • Cho, S. H. et al. Low-oxygen-recovery assay for high-throughput screening of compounds against nonreplicating Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 51, 1380–1385 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roberts, A. D. et al. in Methods in Microbiology (eds Kaufmann, S. & Kabelitz, D.) 433–462 (Academic, 2002).

  • RELATED ARTICLES

    Most Popular

    Recent Comments