Sunday, December 29, 2024
No menu items!
HomeNatureSubstrate binding and inhibition mechanism of norepinephrine transporter

Substrate binding and inhibition mechanism of norepinephrine transporter

  • Bönisch, H. & Brüss, M. The norepinephrine transporter in physiology and disease. Handb. Exp. Pharmacol. 175, 485–524 (2006).

    Article 

    Google Scholar
     

  • O’Donnell, J., Zeppenfeld, D., McConnell, E., Pena, S. & Nedergaard, M. Norepinephrine: a neuromodulator that boosts the function of multiple cell types to optimize CNS performance. Neurochem. Res. 37, 2496–2512 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pacholczyk, T., Blakely, R. D. & Amara, S. G. Expression cloning of a cocaine- and antidepressant-sensitive human noradrenaline transporter. Nature 350, 350–354 (1991).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, J. Norepinephrine transporter inhibitors and their therapeutic potential. Drugs Future 29, 1235–1244 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • DuBois, S. G. et al. Evaluation of norepinephrine transporter expression and metaiodobenzylguanidine avidity in neuroblastoma: a report from the Children’s Oncology Group. Int. J. Mol. Imaging 2012, 250834 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pandit-Taskar, N. & Modak, S. Norepinephrine transporter as a target for imaging and therapy. J. Nucl. Med. 58, 39S–53S (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, X., Kudo, T., Lapa, C., Buck, A. & Higuchi, T. Recent advances in radiotracers targeting norepinephrine transporter: structural development and radiolabeling improvements. J. Neural Transm. 127, 851–873 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Kristensen, A. S. et al. SLC6 neurotransmitter transporters: structure, function, and regulation. Pharmacol. Rev. 63, 585–640 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheng, M. H. & Bahar, I. Monoamine transporters: structure, intrinsic dynamics and allosteric regulation. Nat. Struct. Mol. Biol. 26, 545–556 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vallabhajosula, S. & Nikolopoulou, A. Radioiodinated metaiodobenzylguanidine (MIBG): radiochemistry, biology, and pharmacology. Semin. Nucl. Med. 41, 324–333 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Taggart, D., Dubois, S. & Matthay, K. K. Radiolabeled metaiodobenzylguanidine for imaging and therapy of neuroblastoma. Q. J. Nucl. Med. Mol. Imaging 52, 403–418 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • Heal, D. J., Gosden, J. & Smith, S. L. New drugs to treat ADHD: opportunities and challenges in research and development. Curr. Top. Behav. Neurosci. 57, 79–126 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Dhillon, S., Yang, L. P. H. & Curran, M. P. Spotlight on bupropion in major depressive disorder. CNS Drugs 22, 613–617 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Stahl, S. M. et al. A review of the neuropharmacology of bupropion, a dual norepinephrine and dopamine reuptake inhibitor. J. Clin. Psychiatr. 6, 159–166 (2004).


    Google Scholar
     

  • Lukas, R. J. et al. Synthesis and characterization of in vitro and in vivo profiles of hydroxybupropion analogues: aids to smoking cessation. J. Med. Chem. 53, 4731–4748 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yamashita, A., Singh, S. K., Kawate, T., Jin, Y. & Gouaux, E. Crystal structure of a bacterial homologue of Na+/Cl-dependent neurotransmitter transporters. Nature 437, 215–223 (2005).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Penmatsa, A., Wang, K. H. & Gouaux, E. X-ray structure of dopamine transporter elucidates antidepressant mechanism. Nature 503, 85–90 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kazmier, K. et al. Conformational dynamics of ligand-dependent alternating access in LeuT. Nat. Struct. Mol. Biol. 21, 472–479 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pidathala, S., Mallela, A. K., Joseph, D. & Penmatsa, A. Structural basis of norepinephrine recognition and transport inhibition in neurotransmitter transporters. Nat. Commun. 12, 2199 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sørensen, L. et al. Interaction of antidepressants with the serotonin and norepinephrine transporters: mutational studies of the S1 substrate binding pocket. J. Biol. Chem. 287, 43694–43707 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schlessinger, A. et al. Structure-based discovery of prescription drugs that interact with the norepinephrine transporter, NET. Proc. Natl Acad. Sci. USA 108, 15810–15815 (2011).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jha, P., Ragnarsson, L. & Lewis, R. J. Structure-function of the high affinity substrate binding site (S1) of human norepinephrine transporter. Front. Pharmacol. 11, 217 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kawate, T. & Gouaux, E. Fluorescence-detection size-exclusion chromatography for precrystallization screening of integral membrane proteins. Structure 14, 673–681 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Coleman, J. A., Green, E. M. & Gouaux, E. X-ray structures and mechanism of the human serotonin transporter. Nature 532, 334–339 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bauman, P. A. & Blakely, R. D. Determinants within the C-terminus of the human norepinephrine transporter dictate transporter trafficking, stability, and activity. Arch. Biochem. Biophys. 404, 80–91 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Distelmaier, F., Wiedemann, P., Brüss, M. & Bönisch, H. Functional importance of the C-terminus of the human norepinephrine transporter. J. Neurochem. 91, 537–546 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sorkina, T. et al. RNA interference screen reveals an essential role of Nedd4-2 in dopamine transporter ubiquitination and endocytosis. J. Neurosci. 26, 8195–8205 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, K. H., Penmatsa, A. & Gouaux, E. Neurotransmitter and psychostimulant recognition by the dopamine transporter. Nature 521, 322–327 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fujii, Y. et al. PA tag: a versatile protein tagging system using a super high affinity antibody against a dodecapeptide derived from human podoplanin. Protein Expression Purif. 95, 240–247 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Mason, J. N. et al. Novel fluorescence-based approaches for the study of biogenic amine transporter localization, activity, and regulation. J. Neurosci. Methods 143, 3–25 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Haunsø, A. & Buchanan, D. Pharmacological characterization of a fluorescent uptake assay for the noradrenaline transporter. J. Biomol. Screen. 12, 378–384 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Arimori, T. et al. Fv-clasp: an artificially designed small antibody fragment with improved production compatibility, stability, and crystallizability. Structure 25, 1611–1622 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Smart, O. S., Neduvelil, J. G., Wang, X., Wallace, B. A. & Sansom, M. S. P. HOLE: A program for the analysis of the pore dimensions of ion channel structural models. J. Mol. Graph. 14, 354–360 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kantcheva, A. K. et al. Chloride binding site of neurotransmitter sodium symporters. Proc. Natl Acad. Sci. USA 110, 8489–8494 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Y. W. et al. Chloride-dependent conformational changes in the GlyT1 glycine transporter. Proc. Natl Acad. Sci. USA 118, e2017431118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zomot, E. et al. Mechanism of chloride interaction with neurotransmitter:sodium symporters. Nature 449, 726–730 (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Nayak, S. R. et al. Cryo-EM structure of GABA transporter 1 reveals substrate recognition and transport mechanism. Nat. Struct. Mol. Biol. 30, 1023–1032 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, C.-I. A., Shaikh, N. H., Ramu, S. & Lewis, R. J. A second extracellular site is required for norepinephrine transport by the human norepinephrine transporter. Mol. Pharmacol. 82, 898–909 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu, A. et al. Molecular basis for substrate recognition and transport of human GABA transporter GAT1. Nat. Struct. Mol. Biol. 30, 1012–1022 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gotfryd, K. et al. X-ray structure of LeuT in an inward-facing occluded conformation reveals mechanism of substrate release. Nat. Commun. 11, 1005 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Napolitano, A., Manini, P. & d’Ischia, M. Oxidation chemistry of catecholamines and neuronal degeneration: an update. Curr. Med. Chem. 18, 1832–1845 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jerry, V. G., John, E. K., Susan, G. A., Beth, J. H. & Fredrick, E. T. Evaluation of metaiodobenzylguanidine uptake by the norepinephrine, dopamine and serotonin transporters. J. Nucl. Med. 34, 1140–1146 (1993).


    Google Scholar
     

  • Tutov, A. et al. Rationalizing the binding modes of PET radiotracers targeting the norepinephrine transporter. Pharmaceutics 15, 690 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barker, E. L., Moore, K. R., Rakhshan, F. & Blakely, R. D. Transmembrane domain I contributes to the permeation pathway for serotonin and ions in the serotonin transporter. J. Neurosci. 19, 4705–4717 (1999).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Coleman, J. A. et al. Serotonin transporter-ibogaine complexes illuminate mechanisms of inhibition and transport. Nature 569, 141–145 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Motiwala, Z. et al. Structural basis of GABA reuptake inhibition. Nature 606, 820–826 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shahsavar, A. et al. Structural insights into the inhibition of glycine reuptake. Nature 591, 677–681 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, N. et al. Structure of a pancreatic ATP-sensitive potassium channel. Cell 168, 101–110 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yunlu, K. & Lei, C. Structure and mechanism of NALCN-FAM155AUNC79-UNC80 channel complex. Nat. Commun. 13, 2639 (2022).

    Article 

    Google Scholar
     

  • Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, K. Gctf: real-time CTF determination and correction. J. Struct. Biol. 193, 1–12 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, S. et al. High-resolution noise substitution to measure overfitting and validate resolution in 3D structure determination by single particle electron cryomicroscopy. Ultramicroscopy 135, 24–35 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goddard, T. D. et al. UCSF ChimeraX: meeting modern challenges in visualization and analysis. Protein Sci. 27, 14–25 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Afonine, P. V. et al. Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr. D 74, 531–544 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hongtao, Z. & Amedeo, C. Discovery of ZAP70 inhibitors by high-throughput docking into a conformation of its kinase domain generated by molecular dynamics. Bioorg. Med. Chem. Lett. 23, 5721–5726 (2013).

    Article 

    Google Scholar
     

  • Tai-Sung, L. et al. Alchemical binding free energy calculations in AMBER20: advances and best practices for drug discovery. J. Chem. Inf. Model. 60, 5595–5623 (2020).

    Article 

    Google Scholar
     

  • Ji, W. et al. Data for ‘Substrate binding and inhibition mechanism of norepinephrine transporter’. figshare https://doi.org/10.6084/m9.figshare.26043313.v1 (2024).

  • RELATED ARTICLES

    Most Popular

    Recent Comments