Bönisch, H. & Brüss, M. The norepinephrine transporter in physiology and disease. Handb. Exp. Pharmacol. 175, 485â524 (2006).
OâDonnell, J., Zeppenfeld, D., McConnell, E., Pena, S. & Nedergaard, M. Norepinephrine: a neuromodulator that boosts the function of multiple cell types to optimize CNS performance. Neurochem. Res. 37, 2496â2512 (2012).
Pacholczyk, T., Blakely, R. D. & Amara, S. G. Expression cloning of a cocaine- and antidepressant-sensitive human noradrenaline transporter. Nature 350, 350â354 (1991).
Zhou, J. Norepinephrine transporter inhibitors and their therapeutic potential. Drugs Future 29, 1235â1244 (2004).
DuBois, S. G. et al. Evaluation of norepinephrine transporter expression and metaiodobenzylguanidine avidity in neuroblastoma: a report from the Childrenâs Oncology Group. Int. J. Mol. Imaging 2012, 250834 (2012).
Pandit-Taskar, N. & Modak, S. Norepinephrine transporter as a target for imaging and therapy. J. Nucl. Med. 58, 39Sâ53S (2017).
Chen, X., Kudo, T., Lapa, C., Buck, A. & Higuchi, T. Recent advances in radiotracers targeting norepinephrine transporter: structural development and radiolabeling improvements. J. Neural Transm. 127, 851â873 (2020).
Kristensen, A. S. et al. SLC6 neurotransmitter transporters: structure, function, and regulation. Pharmacol. Rev. 63, 585â640 (2011).
Cheng, M. H. & Bahar, I. Monoamine transporters: structure, intrinsic dynamics and allosteric regulation. Nat. Struct. Mol. Biol. 26, 545â556 (2019).
Vallabhajosula, S. & Nikolopoulou, A. Radioiodinated metaiodobenzylguanidine (MIBG): radiochemistry, biology, and pharmacology. Semin. Nucl. Med. 41, 324â333 (2011).
Taggart, D., Dubois, S. & Matthay, K. K. Radiolabeled metaiodobenzylguanidine for imaging and therapy of neuroblastoma. Q. J. Nucl. Med. Mol. Imaging 52, 403â418 (2008).
Heal, D. J., Gosden, J. & Smith, S. L. New drugs to treat ADHD: opportunities and challenges in research and development. Curr. Top. Behav. Neurosci. 57, 79â126 (2022).
Dhillon, S., Yang, L. P. H. & Curran, M. P. Spotlight on bupropion in major depressive disorder. CNS Drugs 22, 613â617 (2008).
Stahl, S. M. et al. A review of the neuropharmacology of bupropion, a dual norepinephrine and dopamine reuptake inhibitor. J. Clin. Psychiatr. 6, 159â166 (2004).
Lukas, R. J. et al. Synthesis and characterization of in vitro and in vivo profiles of hydroxybupropion analogues: aids to smoking cessation. J. Med. Chem. 53, 4731â4748 (2010).
Yamashita, A., Singh, S. K., Kawate, T., Jin, Y. & Gouaux, E. Crystal structure of a bacterial homologue of Na+/Cl-dependent neurotransmitter transporters. Nature 437, 215â223 (2005).
Penmatsa, A., Wang, K. H. & Gouaux, E. X-ray structure of dopamine transporter elucidates antidepressant mechanism. Nature 503, 85â90 (2013).
Kazmier, K. et al. Conformational dynamics of ligand-dependent alternating access in LeuT. Nat. Struct. Mol. Biol. 21, 472â479 (2014).
Pidathala, S., Mallela, A. K., Joseph, D. & Penmatsa, A. Structural basis of norepinephrine recognition and transport inhibition in neurotransmitter transporters. Nat. Commun. 12, 2199 (2021).
Sørensen, L. et al. Interaction of antidepressants with the serotonin and norepinephrine transporters: mutational studies of the S1 substrate binding pocket. J. Biol. Chem. 287, 43694â43707 (2012).
Schlessinger, A. et al. Structure-based discovery of prescription drugs that interact with the norepinephrine transporter, NET. Proc. Natl Acad. Sci. USA 108, 15810â15815 (2011).
Jha, P., Ragnarsson, L. & Lewis, R. J. Structure-function of the high affinity substrate binding site (S1) of human norepinephrine transporter. Front. Pharmacol. 11, 217 (2020).
Kawate, T. & Gouaux, E. Fluorescence-detection size-exclusion chromatography for precrystallization screening of integral membrane proteins. Structure 14, 673â681 (2006).
Coleman, J. A., Green, E. M. & Gouaux, E. X-ray structures and mechanism of the human serotonin transporter. Nature 532, 334â339 (2016).
Bauman, P. A. & Blakely, R. D. Determinants within the C-terminus of the human norepinephrine transporter dictate transporter trafficking, stability, and activity. Arch. Biochem. Biophys. 404, 80â91 (2002).
Distelmaier, F., Wiedemann, P., Brüss, M. & Bönisch, H. Functional importance of the C-terminus of the human norepinephrine transporter. J. Neurochem. 91, 537â546 (2004).
Sorkina, T. et al. RNA interference screen reveals an essential role of Nedd4-2 in dopamine transporter ubiquitination and endocytosis. J. Neurosci. 26, 8195â8205 (2006).
Wang, K. H., Penmatsa, A. & Gouaux, E. Neurotransmitter and psychostimulant recognition by the dopamine transporter. Nature 521, 322â327 (2015).
Fujii, Y. et al. PA tag: a versatile protein tagging system using a super high affinity antibody against a dodecapeptide derived from human podoplanin. Protein Expression Purif. 95, 240â247 (2014).
Mason, J. N. et al. Novel fluorescence-based approaches for the study of biogenic amine transporter localization, activity, and regulation. J. Neurosci. Methods 143, 3â25 (2005).
Haunsø, A. & Buchanan, D. Pharmacological characterization of a fluorescent uptake assay for the noradrenaline transporter. J. Biomol. Screen. 12, 378â384 (2007).
Arimori, T. et al. Fv-clasp: an artificially designed small antibody fragment with improved production compatibility, stability, and crystallizability. Structure 25, 1611â1622 (2017).
Smart, O. S., Neduvelil, J. G., Wang, X., Wallace, B. A. & Sansom, M. S. P. HOLE: A program for the analysis of the pore dimensions of ion channel structural models. J. Mol. Graph. 14, 354â360 (1996).
Kantcheva, A. K. et al. Chloride binding site of neurotransmitter sodium symporters. Proc. Natl Acad. Sci. USA 110, 8489â8494 (2013).
Zhang, Y. W. et al. Chloride-dependent conformational changes in the GlyT1 glycine transporter. Proc. Natl Acad. Sci. USA 118, e2017431118 (2021).
Zomot, E. et al. Mechanism of chloride interaction with neurotransmitter:sodium symporters. Nature 449, 726â730 (2007).
Nayak, S. R. et al. Cryo-EM structure of GABA transporter 1 reveals substrate recognition and transport mechanism. Nat. Struct. Mol. Biol. 30, 1023â1032 (2023).
Wang, C.-I. A., Shaikh, N. H., Ramu, S. & Lewis, R. J. A second extracellular site is required for norepinephrine transport by the human norepinephrine transporter. Mol. Pharmacol. 82, 898â909 (2012).
Zhu, A. et al. Molecular basis for substrate recognition and transport of human GABA transporter GAT1. Nat. Struct. Mol. Biol. 30, 1012â1022 (2023).
Gotfryd, K. et al. X-ray structure of LeuT in an inward-facing occluded conformation reveals mechanism of substrate release. Nat. Commun. 11, 1005 (2020).
Napolitano, A., Manini, P. & dâIschia, M. Oxidation chemistry of catecholamines and neuronal degeneration: an update. Curr. Med. Chem. 18, 1832â1845 (2011).
Jerry, V. G., John, E. K., Susan, G. A., Beth, J. H. & Fredrick, E. T. Evaluation of metaiodobenzylguanidine uptake by the norepinephrine, dopamine and serotonin transporters. J. Nucl. Med. 34, 1140â1146 (1993).
Tutov, A. et al. Rationalizing the binding modes of PET radiotracers targeting the norepinephrine transporter. Pharmaceutics 15, 690 (2023).
Barker, E. L., Moore, K. R., Rakhshan, F. & Blakely, R. D. Transmembrane domain I contributes to the permeation pathway for serotonin and ions in the serotonin transporter. J. Neurosci. 19, 4705â4717 (1999).
Coleman, J. A. et al. Serotonin transporter-ibogaine complexes illuminate mechanisms of inhibition and transport. Nature 569, 141â145 (2019).
Motiwala, Z. et al. Structural basis of GABA reuptake inhibition. Nature 606, 820â826 (2022).
Shahsavar, A. et al. Structural insights into the inhibition of glycine reuptake. Nature 591, 677â681 (2021).
Li, N. et al. Structure of a pancreatic ATP-sensitive potassium channel. Cell 168, 101â110 (2017).
Yunlu, K. & Lei, C. Structure and mechanism of NALCN-FAM155AUNC79-UNC80 channel complex. Nat. Commun. 13, 2639 (2022).
Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331â332 (2017).
Zhang, K. Gctf: real-time CTF determination and correction. J. Struct. Biol. 193, 1â12 (2016).
Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290â296 (2017).
Chen, S. et al. High-resolution noise substitution to measure overfitting and validate resolution in 3D structure determination by single particle electron cryomicroscopy. Ultramicroscopy 135, 24â35 (2013).
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583â589 (2021).
Goddard, T. D. et al. UCSF ChimeraX: meeting modern challenges in visualization and analysis. Protein Sci. 27, 14â25 (2018).
Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486â501 (2010).
Afonine, P. V. et al. Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr. D 74, 531â544 (2018).
Hongtao, Z. & Amedeo, C. Discovery of ZAP70 inhibitors by high-throughput docking into a conformation of its kinase domain generated by molecular dynamics. Bioorg. Med. Chem. Lett. 23, 5721â5726 (2013).
Tai-Sung, L. et al. Alchemical binding free energy calculations in AMBER20: advances and best practices for drug discovery. J. Chem. Inf. Model. 60, 5595â5623 (2020).
Ji, W. et al. Data for âSubstrate binding and inhibition mechanism of norepinephrine transporterâ. figshare https://doi.org/10.6084/m9.figshare.26043313.v1 (2024).