Wednesday, January 14, 2026
No menu items!
HomeNatureSub-zero Celsius elastocaloric cooling via low-transition-temperature alloys

Sub-zero Celsius elastocaloric cooling via low-transition-temperature alloys

  • Abas, N. et al. Natural and synthetic refrigerants, global warming: a review. Renew. Sustain. Energy Rev. 90, 557–569 (2018).

    Article 

    Google Scholar
     

  • Garimella, S. et al. Realistic pathways to decarbonization of building energy systems. Joule 6, 956–971 (2022).

    Article 

    Google Scholar
     

  • Esper, J. et al. 2023 summer warmth unparalleled over the past 2,000 years. Nature 631, 94–97 (2024).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Cui, J. et al. Demonstration of high efficiency elastocaloric cooling with large ΔT using NiTi wires. Appl. Phys. Lett. 101, 073904 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Li, L. et al. Cooling innovations: elastocaloric shape memory alloys, manufacturing, simulation, and refrigerator. Prog. Mater. Sci. 153, 101477 (2025).

    Article 

    Google Scholar
     

  • Cui, J. Early efforts on elastocaloric cooling (2002 to 2014). Shape Mem. Superelasticity 10, 80–88 (2024).

    Article 

    Google Scholar
     

  • Tusek, J. et al. A regenerative elastocaloric heat pump. Nat. Energy 1, 16134 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Ahcin, Z. et al. High-performance cooling and heat pumping based on fatigue-resistant elastocaloric effect in compression. Joule 6, 2338–2357 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, G. et al. A multi-material cascade elastocaloric cooling device for large temperature lift. Nat. Energy 9, 862–870 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Qian, S. et al. High-performance multimode elastocaloric cooling system. Science 380, 722–727 (2023).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Li, X. et al. High-frequency bending-actuated elastocaloric cooler with enhanced cooling performance. Cell Rep. Phys. Sci. 6, 102669 (2025).

    Article 

    Google Scholar
     

  • Dall’Olio, S. et al. Development of a tube-based elastocaloric regenerator loaded in compression: a review. Shape Mem. Superelasticity 10, 99–118 (2024).

    Article 

    Google Scholar
     

  • Xu, J. et al. SMA film-based elastocaloric cooling devices. Shape Mem. Superelasticity 10, 119–133 (2024).

    Article 

    Google Scholar
     

  • Manosa, L. & Planes, A. Solid-state cooling by stress: a perspective. Appl. Phys. Lett. 116, 050501 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Bruederlin, F. et al. SMA foil-based elastocaloric cooling: from material behavior to device engineering. J. Phys. D Appl. Phys. 50, 424003 (2017).

    Article 

    Google Scholar
     

  • Kawarada, Y. et al. Abnormal grain growth of 68Cu–16Al–16Zn alloys for elastocaloric cooling via cyclical heat treatments. J. Phys. Energy 5, 024012 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Qian, S. et al. Elastocaloric effect in CuAlZn and CuAlMn shape memory alloys under compression. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 374, 20150309 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Franco, V. et al. Magnetocaloric effect: from materials research to refrigeration devices. Prog. Mater. Sci. 93, 112–232 (2018).

    Article 

    Google Scholar
     

  • Hou, H. et al. Materials, physics and systems for multicaloric cooling. Nat. Rev. Mater. 7, 633–652 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Hilliard, B. et al. Magnetocaloric effect in Gd1-xCexNi (x = 0-0.6): a cost-effective approach to tuning Curie temperature from 70 K to 30 K. J. Alloys Compd. 989, 174186 (2024).

    Article 

    Google Scholar
     

  • Archipley, C. et al. Methane liquefaction with an active magnetic regenerative refrigerator. Cryogenics 128, 103588 (2022).

    Article 

    Google Scholar
     

  • Kabirifar, P. et al. From the elastocaloric effect towards an efficient thermodynamic cycle. J. Phys. Energy 4, 044009 (2022).

    Article 
    ADS 

    Google Scholar
     

  • N’Tsoukpoe, K. et al. A review on the use of calcium chloride in applied thermal engineering. Appl. Therm. Eng. 75, 513–531 (2015).

    Article 

    Google Scholar
     

  • Wang, K. et al. A 3D-printed full-soft regenerative elastocaloric cooler. Energy Convers. Manag. 336, 119811 (2025).

    Article 

    Google Scholar
     

  • Liu, Y. et al. Numerical simulation and experimental investigation of a novel elastocaloric air conditioning system. Appl. Therm. Eng. 274, 126643 (2025).

    Article 

    Google Scholar
     

  • Zhou, G. et al. Giant temperature span and cooling power in elastocaloric regenerator. Joule 7, 2003–2015 (2023).

    Article 

    Google Scholar
     

  • Hartquist, C. et al. An elastomer with ultrahigh strain-induced crystallization. Sci. Adv. 9, eadj0411 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, J. et al. Highly efficient grooved NiTi tube refrigerants for compressive elastocaloric cooling. Appl. Therm. Eng. 228, 120439 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Chen, Y. et al. A compact elastocaloric refrigerator. The Innovation 3, 100205 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Greibich, F. et al. Elastocaloric heat pump with specific cooling power of 20.9 W g−1 exploiting snap-through instability and strain-induced crystallization. Nat. Energy 6, 260–267 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Snodgrass, R. & Erickson, D. A multistage elastocaloric refrigerator and heat pump with 28 K temperature span. Sci. Rep. 9, 18532 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Engelbrecht, K. et al. A regenerative elastocaloric device: experimental results. J. Phys. D Appl. Phys. 50, 424006 (2017).

    Article 

    Google Scholar
     

  • Ossmer, H. et al. Energy-efficient miniature-scale heat pumping based on shape memory alloys. Smart Mater. Struct. 25, 085037 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Schmidt, M. et al. Scientific test setup for investigation of shape memory alloy based elastocaloric cooling processes. Int. J. Refrig 54, 88–97 (2015).

    Article 

    Google Scholar
     

  • Zhang, K. et al. Interactions among phase transition, heat transfer and austenite plasticity in cyclic compression of NiTi shape memory alloys: effect of loading frequency. J. Mech. Phys. Solids 191, 105782 (2024).

    Article 

    Google Scholar
     

  • Zimmermann, D. et al. Modeling moist air effects and shape memory alloys in elastocaloric devices. Front. Mater. 12, 1559800 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Hua, P. et al. Nanocomposite NiTi shape memory alloy with high strength and fatigue resistance. Nat. Nanotechnol. 16, 409–413 (2021).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Lin, H. et al. Grain boundary and dislocation strengthening of nanocrystalline NiTi for stable elastocaloric cooling. Scr. Mater. 226, 115227 (2023).

    Article 

    Google Scholar
     

  • Xu, B. et al. Enhanced cyclic stability of NiTi shape memory alloy elastocaloric materials with Ni4Ti3 nanoprecipitates: experiment and phase field modeling. J. Mech. Phys. Solids 196, 106011 (2025).

    Article 

    Google Scholar
     

  • Ren, S. et al. Corrosion testing of metals in contact with calcium chloride hexahydrate used for thermal energy storage. Mater. Corros. 68, 1046–1056 (2017).

    Article 
    ADS 

    Google Scholar
     

  • ASTM International. G46-94. Standard guide for examination and evaluation of pitting corrosion. iTeh https://doi.org/10.1520/G0046-94R05 (2005).

  • Wang, J. et al. Machine-assisted quantification of droplet boiling upon multiple solid materials. Nano Energy 125, 109560 (2024).

    Article 

    Google Scholar
     

  • Zhu, Y. et al. A numerical study of elastocaloric regenerators of tubular structures. Appl. Energy 339, 120990 (2023).

    Article 

    Google Scholar
     

  • Yao, S. et al. Efficient roller-driven elastocaloric refrigerator. Nat. Commun. 15, 7203 (2024).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ritchie H. Sector by sector: where do global greenhouse gas emissions come from? Our World in Data https://ourworldindata.org/ghg-emissions-by-sector (2020).

  • Velders, G. et al. Projections of hydrofluorocarbon (HFC) emissions and the resulting global warming based on recent trends in observed abundances and current policies. Atmos. Chem. Phys. 22, 6087–6101 (2022).

    Article 
    ADS 

    Google Scholar
     

  • UNEP Ozone Secretariat. Fact Sheet 2. Overview of HFC Market Sectors. UN Environment Programme https://ozone.unep.org/sites/ozone/files/Meeting_Documents/HFCs/FS_2_Overview_of_HFC_Markets_Oct_2015.pdf (2015).

  • Zhou, G. et al. Achieving kilowatt-scale elastocaloric cooling by a multi-cell architecture. Nature 639, 87–92 (2025).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Cirillo, L. et al. 2D thermo-fluidynamic rotary model of an elastocaloric cooling device: the energy performances. Energy Convers. Manag. X 23, 100635 (2024).


    Google Scholar
     

  • Wang, K. et al. Numerical study of enhanced cooling in active elastocaloric regenerators with porous woven structures. Appl. Energy 395, 126180 (2025).

    Article 

    Google Scholar
     

  • Xu, J. Exceeding the kilowatt threshold. Nat. Energy 10, 1187–1188 (2025).

    Article 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments