Friday, January 30, 2026
No menu items!
HomeNatureStructures of Ostα/β reveal a unique fold and bile acid transport mechanism

Structures of Ostα/β reveal a unique fold and bile acid transport mechanism

  • Deng, F. Y. & Bae, Y. H. Bile acid transporter-mediated oral drug delivery. J. Control. Release 327, 100–116 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Beaudoin, J. J., Brouwer, K. L. R. & Malinen, M. M. Novel insights into the organic solute transporter alpha/beta, OSTα/β: from the bench to the bedside. Pharmacol. Therapeut. https://doi.org/10.1016/j.pharmthera.2020.107542 (2020).

  • Ballatori, N., Christian, W. V., Wheeler, S. G. & Hammond, C. L. The heteromeric organic solute transporter, OSTα-OSTβ/SLC51: a transporter for steroid-derived molecules. Mol. Aspects Med. 34, 683–692 (2013).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Gao, E. et al. Organic solute transporter alpha deficiency: a disorder with cholestasis, liver fibrosis, and congenital diarrhea. Hepatology 71, 1879–1882 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Sultan, M. et al. Organic solute transporter-beta (SLC51B) deficiency in two brothers with congenital diarrhea and features of cholestasis. Hepatology 68, 590–598 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Collins, S. L., Stine, J. C., Bisanz, J. E., Okafor, C. D. & Patterson, A. D. Bile acids and the gut microbiota: metabolic interactions and impacts on disease. Nat. Rev. Microbiol. 21, 236–247 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Fleishman, J. S. & Kumar, S. Bile acid metabolism and signaling in health and disease: molecular mechanisms and therapeutic targets. Signal Transduct. Tar. https://doi.org/10.1038/s41392-024-01811-6 (2024).

  • Fang, F. et al. Neurosteroid transport by the organic solute transporter OSTα-OSTβ. J. Neurochem. 115, 220–233 (2010).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Boyer, J. L. & Soroka, C. J. Bile formation and secretion: an update. J. Hepatol. 75, 190–201 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Ferrebee, C. B. et al. Organic solute transporter α-β protects ileal enterocytes from bile acid-induced injury. Cell Mol. Gastroenter. 5, 499–522 (2018).


    Google Scholar
     

  • Goutam, K., Ielasi, F. S., Pardon, E., Steyaert, J. & Reyes, N. Structural basis of sodium-dependent bile salt uptake into the liver. Nature 606, 1015 (2022).

    Article 
    PubMed 
    PubMed Central 
    ADS 
    CAS 

    Google Scholar
     

  • Liu, H. T. et al. Structure of human NTCP reveals the basis of recognition and sodium-driven transport of bile salts into the liver. Cell Res. 32, 773–776 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Shionoya, K. et al. Structural basis for hepatitis B virus restriction by a viral receptor homologue. Nat. Commun. 15, 9241 (2024).

  • Asami, J. et al. Structure of the bile acid transporter and HBV receptor NTCP. Nature 606, 1021–1026 (2022).

    Article 
    PubMed 
    ADS 
    CAS 

    Google Scholar
     

  • Liu, H. et al. Structure of antiviral drug bulevirtide bound to hepatitis B and D virus receptor protein NTCP. Nat. Commun. 15, 2476 (2024).

    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Hu, N. J., Iwata, S., Cameron, A. D. & Drew, D. Crystal structure of a bacterial homologue of the bile acid sodium symporter ASBT. Nature 478, 408 (2011).

    Article 
    PubMed 
    PubMed Central 
    ADS 
    CAS 

    Google Scholar
     

  • Zhou, X. M. et al. Structural basis of the alternating-access mechanism in a bile acid transporter. Nature 505, 569–573 (2014).

    Article 
    PubMed 
    ADS 
    CAS 

    Google Scholar
     

  • Dawson, P. A. et al. The heteromeric organic solute transporter alpha-beta, Ostalpha-Ostbeta, is an ileal basolateral bile acid transporter. J. Biol. Chem. 280, 6960–6968 (2005).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Varadi, M. et al. AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 50, D439–D444 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • van Kempen, M. et al. Fast and accurate protein structure search with Foldseek. Nat. Biotechnol. 42, 243–246 (2024).

    Article 
    PubMed 
    ADS 

    Google Scholar
     

  • Gyimesi, G. & Hediger, M. A. Systematic in silico discovery of novel solute carrier-like proteins from proteomes. PLoS ONE 17, e0271062 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Pugh, R. J. et al. Transmembrane Protein 184A is a receptor required for vascular smooth muscle cell responses to heparin. J. Biol. Chem. 291, 5326–5341 (2016).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Chapman, K. A. et al. Pathogenic variants in TMEM184B cause a neurodevelopmental syndrome associated with alteration of metabolic signaling. Am. J. Hum. Genet. 112, 2381–2401 (2025).

  • Bhattacharya, M. R. C. et al. TMEM184b promotes axon degeneration and neuromuscular junction maintenance. J. Neurosci. 36, 4681–4689 (2016).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Suga, T., Yamaguchi, H., Ogura, J. & Mano, N. Characterization of conjugated and unconjugated bile acid transport via human organic solute transporter alpha/beta. Biochim. Biophys. Acta Biomembr. 1861, 1023–1029 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Holm, L., Laiho, A., Toronen, P. & Salgado, M. DALI shines a light on remote homologs: one hundred discoveries. Protein Sci. 32, e4519 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Kanada, S., Takeguchi, Y., Murakami, M., Ihara, K. & Kouyama, T. Crystal structures of an O-like blue form and an anion-free yellow form of pharaonis halorhodopsin. J. Mol. Biol. 413, 162–176 (2011).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ballatori, N. Biology of a novel organic solute and steroid transporter, OSTalpha-OSTbeta. Exp. Biol. Med. 230, 689–698 (2005).

    Article 
    CAS 

    Google Scholar
     

  • McCarthy, A. E., Yoshioka, C. & Mansoor, S. E. Full-length P2XStructures reveal how palmitoylation prevents channel desensitization. Cell 179, 659 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Drew, D., North, R. A., Nagarathinam, K. & Tanabe, M. Structures and general transport mechanisms by the Major Facilitator Superfamily (MFS). Chem. Rev. 121, 5289–5335 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Deng, D. et al. Crystal structure of the human glucose transporter GLUT1. Nature 510, 121–125 (2014).

    Article 
    PubMed 
    ADS 
    CAS 

    Google Scholar
     

  • Zeng, Y. C. et al. Structural basis of promiscuous substrate transport by Organic Cation Transporter 1. Nat. Commun. 14, 6374 (2023).

    Article 
    PubMed 
    PubMed Central 
    ADS 
    CAS 

    Google Scholar
     

  • Varadi, M. et al. AlphaFold protein structure database in 2024: providing structure coverage for over 214 million protein sequences. Nucleic Acids Res. 52, D368–D375 (2024).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Padan, E. & Michel, H. NhaA: a unique structural fold of secondary active transporters. Isr. J. Chem. 55, 1233–1239 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Sakuragi, T. & Nagata, S. Regulation of phospholipid distribution in the lipid bilayer by flippases and scramblases (Apr 2023, 10.1038/s41580-02300604-z). Nat. Rev. Mol. Cell Bio. 24, 597–597 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Bushell, K. S. R. et al. The structural basis of lipid scrambling and inactivation in the endoplasmic reticulum scramblase TMEM16K. Nat. Commun. 10, 3956 (2019).

  • Sakuragi, T. et al. The tertiary structure of the human Xkr8-Basigin complex that scrambles phospholipids at plasma membranes. Nat. Struct. Mol. Biol. 28, 825 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Kasimova, M. A., Lindahl, E. & Delemotte, L. Determining the molecular basis of voltage sensitivity in membrane proteins. J. Gen. Physiol. 150, 1444–1458 (2018).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • English, N. J. & Waldron, C. J. Perspectives on external electric fields in molecular simulation: progress, prospects and challenges. Phys. Chem. Chem. Phys. 17, 12407–12440 (2015).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wang, W., Seward, D. J., Li, L., Boyer, J. L. & Ballatori, N. Expression cloning of two genes that together mediate organic solute and steroid transport in the liver of a marine vertebrate. Proc. Natl Acad. Sci. USA 98, 9431–9436 (2001).

    Article 
    PubMed 
    PubMed Central 
    ADS 
    CAS 

    Google Scholar
     

  • Ballatori, N. et al. OSTalpha-OSTbeta: a major basolateral bile acid and steroid transporter in human intestinal, renal, and biliary epithelia. Hepatology 42, 1270–1279 (2005).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Yan, R., Zhao, X., Lei, J. & Zhou, Q. Structure of the human LAT1-4F2hc heteromeric amino acid transporter complex. Nature 568, 127–130 (2019).

    Article 
    PubMed 
    ADS 
    CAS 

    Google Scholar
     

  • Maxfield, F. R. & Wustner, D. Intracellular cholesterol transport. J. Clin. Invest. 110, 891–898 (2002).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Lu, Y. et al. Characterization of a novel organic solute transporter homologue from Clonorchis sinensis. PLoS Negl. Trop. Dis. 12, e0006459 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Malinen, M. M., Ali, I., Bezencon, J., Beaudoin, J. J. & Brouwer, K. L. R. Organic solute transporter OSTalpha/beta is overexpressed in nonalcoholic steatohepatitis and modulated by drugs associated with liver injury. Am. J. Physiol. Gastrointest. Liver Physiol. 314, G597–G609 (2018).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Schott-Verdugo, S. & Gohlke, H. PACKMOL-Memgen: a simple-to-use, generalized workflow for membrane-protein-lipid-bilayer system building. J. Chem. Inf. Model. 59, 2522–2528 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Tian, C. et al. ff19SB: amino-acid-specific protein backbone parameters trained against quantum mechanics energy surfaces in solution. J. Chem. Theory Comput. 16, 528–552 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Dickson, C. J., Walker, R. C. & Gould, I. R. Lipid21: complex lipid membrane simulations with AMBER. J. Chem. Theory Comput. 18, 1726–1736 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • He, X., Man, V. H., Yang, W., Lee, T. S. & Wang, J. A fast and high-quality charge model for the next generation general AMBER force field. J. Chem. Phys. 153, 114502 (2020).

    Article 
    PubMed 
    PubMed Central 
    ADS 
    CAS 

    Google Scholar
     

  • Alenaizan, A., Burns, L. A. & Sherrill, C. D. Python implementation of the restrained electrostatic potential charge model. Int. J. Quantum Chem. 120, e26035 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Olsson, M. H. M., Søndergaard, C. R., Rostkowski, M. & Jensen, J. H. PROPKA3: consistent treatment of internal and surface residues in empirical pKa predictions. J. Chem. Theory Comput. 7, 525–537 (2011).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Lu, S. et al. Activation pathway of a G protein-coupled receptor uncovers conformational intermediates as targets for allosteric drug design. Nat. Commun. 12, 4721 (2021).

    Article 
    PubMed 
    PubMed Central 
    ADS 
    CAS 

    Google Scholar
     

  • He, X. et al. Conformational selection mechanism provides structural insights into the optimization of APC-Asef inhibitors. Molecules https://doi.org/10.3390/molecules26040962 (2021).

  • Salomon-Ferrer, R., Götz, A. W., Poole, D., Le Grand, S. & Walker, R. C. Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. explicit solvent particle mesh Ewald. J. Chem. Theory Comput. 9, 3878–3888 (2013).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Roe, D. R. & Cheatham, T. E. III. PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. J. Chem. Theory Comput. 9, 3084–3095 (2013).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • He, X. Simulation files for Ostα/β. Zenodo https://doi.org/10.5281/zenodo.17656875 (2025).

  • RELATED ARTICLES

    Most Popular

    Recent Comments