Thursday, December 12, 2024
No menu items!
HomeNatureStructure of apolipoprotein B100 bound to the low-density lipoprotein receptor

Structure of apolipoprotein B100 bound to the low-density lipoprotein receptor

  • Segrest, J. P., Jones, M. K., De Loof, H. & Dashti, N. Structure of apolipoprotein B-100 in low density lipoproteins. J. Lipid Res. 42, 1346–1367 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Suryawanshi, Y. N. & Warbhe, R. A. Familial hypercholesterolemia: a literature review of the pathophysiology and current and novel treatments. Cureus 15, e49121 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Borén, J. et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease: pathophysiological, genetic, and therapeutic insights: a consensus statement from the European Atherosclerosis Society Consensus Panel. Eur. Heart J. 41, 2313–2330 (2020).

  • Yu, Y. et al. Polyhedral 3D structure of human plasma very low density lipoproteins by individual particle cryo-electron tomography1. J. Lipid Res. 57, 1879–1888 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ehrlich, M. et al. Endocytosis by random initiation and stabilization of clathrin-coated pits. Cell 118, 591–605 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rudenko, G. et al. Structure of the LDL receptor extracellular domain at endosomal pH. Science 298, 2353–2358 (2002).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Jeon, H. & Blacklow, S. C. Structure and physiologic function of the low-density lipoprotein receptor. Annu. Rev. Biochem. 74, 535–562 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mhaimeed, O. et al. The importance of LDL-C lowering in atherosclerotic cardiovascular disease prevention: lower for longer is better. Am. J. Prev. Cardiol. 18, 100649 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chora, J. R., Medeiros, A. M., Alves, A. C. & Bourbon, M. Analysis of publicly available LDLR, APOB, and PCSK9 variants associated with familial hypercholesterolemia: application of ACMG guidelines and implications for familial hypercholesterolemia diagnosis. Genet. Med. 20, 591–598 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Blacklow, S. C. Versatility in ligand recognition by LDL receptor family proteins: advances and frontiers. Curr. Opin. Struct. Biol. 17, 419–426 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, X. & Rapoport, T. A. Cryo-EM structure determination of small proteins by nanobody-binding scaffolds (Legobodies). Proc. Natl Acad. Sci. USA 118, e2115001118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nykjaer, A. & Willnow, T. E. The low-density lipoprotein receptor gene family: a cellular Swiss army knife. Trends Cell Biol. 12, 273–280 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ren, G. et al. Model of human low-density lipoprotein and bound receptor based on cryoEM. Proc. Natl Acad. Sci. USA 107, 1059–1064 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kumar, V. et al. Three-dimensional cryoEM reconstruction of native LDL particles to 16Å resolution at physiological body temperature. PLoS One 6, e18841 (2011).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cisse, A. et al. Targeting structural flexibility in low density lipoprotein by integrating cryo-electron microscopy and high-speed atomic force microscopy. Int. J. Biol. Macromol. 252, 126345 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, H. et al. Construction of a biotinylated cameloid-like antibody for lable-free detection of apolipoprotein B-100. Biosens. Bioelectron. 64, 111–118 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jeiran, K. et al. A new structural model of apolipoprotein B100 based on computational modeling and cross linking. Int. J. Mol. Sci. 23, 11480 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thompson, J. R. & Banaszak, L. J. Lipid–protein interactions in lipovitellin. Biochemistry 41, 9398–9409 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Biterova, E. I. et al. The crystal structure of human microsomal triglyceride transfer protein. Proc. Natl Acad. Sci. USA 116, 17251–17260 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, R. et al. Apolipoprotein A-I structural organization in high-density lipoproteins isolated from human plasma. Nat. Struct. Mol. Biol. 18, 416–422 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Esser, V., Limbird, L. E., Brown, M. S., Goldstein, J. L. & Russell, D. W. Mutational analysis of the ligand binding domain of the low density lipoprotein receptor. J. Biol. Chem. 263, 13282–13290 (1988).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Russell, D. W., Brown, M. S. & Goldstein, J. L. Different combinations of cysteine-rich repeats mediate binding of low density lipoprotein receptor to two different proteins. J. Biol. Chem. 264, 21682–21688 (1989).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Boren, J. et al. Identification of the low density lipoprotein receptor-binding site in apolipoprotein B100 and the modulation of its binding activity by the carboxyl terminus in familial defective apo-B100. J. Clin. Invest. 101, 1084–1093 (1998).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Motazacker, M. M. et al. Advances in genetics show the need for extending screening strategies for autosomal dominant hypercholesterolaemia. Eur. Heart J. 33, 1360–1366 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rodríguez-Jiménez, C. et al. Identification and functional analysis of APOB variants in a cohort of hypercholesterolemic patients. Int. J. Mol. Sci. 24, 7635 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fernández-Higuero, J. A. et al. Structural analysis of APOB variants, p.(Arg3527Gln), p.(Arg1164Thr) and p.(Gln4494del), causing familial hypercholesterolaemia provides novel insights into variant pathogenicity. Sci. Rep. 5, 18184 (2015).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gaffney, D. et al. Independent mutations at codon 3500 of the apolipoprotein B gene are associated with hyperlipidemia. Arterioscler. Thromb. Vasc. Biol. 15, 1025–1029 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pullinger, C. R. et al. Familial ligand-defective apolipoprotein B. Identification of a new mutation that decreases LDL receptor binding affinity. J. Clin. Invest. 95, 1225–1234 (1995).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, S., Henry, L., Ho, Y. K., Pownall, H. J. & Rudenko, G. Mechanism of LDL binding and release probed by structure-based mutagenesis of the LDL receptor. J. Lipid Res. 51, 297–308 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gomez, A. et al. Functional analysis of six uncharacterised mutations in LDLR gene. Atherosclerosis 291, 44–51 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Benito-Vicente, A. et al. The importance of an integrated analysis of clinical, molecular, and functional data for the genetic diagnosis of familial hypercholesterolemia. Genet. Med. 17, 980–988 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Duskova, L. et al. Low density lipoprotein receptor variants in the beta-propeller subdomain and their functional impact. Front. Genet. 11, 691 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, M. et al. Novel LDLR variants affecting low density lipoprotein metabolism identified in familial hypercholesterolemia. Mol. Biol. Rep. 51, 153 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shen, H. et al. Familial defective apolipoprotein B-100 and increased low-density lipoprotein cholesterol and coronary artery calcification in the Old Order Amish. Arch. Intern. Med. 170, 1850–1855 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Soria, L. F. et al. Association between a specific apolipoprotein B mutation and familial defective apolipoprotein B-100. Proc. Natl Acad. Sci. USA 86, 587–591 (1989).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Montasser, M. E. et al. Genetic and functional evidence links a missense variant in B4GALT1 to lower LDL and fibrinogen. Science 374, 1221–1227 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, Y. et al. In-depth mass spectrometry analysis reveals the plasma proteomic and N-glycoproteomic impact of an Amish-enriched cardioprotective variant in B4GALT1. Mol. Cell. Proteomics 22, 100595 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zou, P. & Ting, A. Y. Imaging LDL receptor oligomerization during endocytosis using a co-internalization assay. ACS Chem. Biol. 6, 308–313 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van Driel, I. R., Davis, C. G., Goldstein, J. L. & Brown, M. S. Self-association of the low density lipoprotein receptor mediated by the cytoplasmic domain. J. Biol. Chem. 262, 16127–16134 (1987).

    Article 
    PubMed 

    Google Scholar
     

  • Heymann, J. B. et al. Clathrin-coated vesicles from brain have small payloads: a cryo-electron tomographic study. J. Struct. Biol. 184, 43–51 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Berndsen Z. T. & Cassidy, C. K. The structure of ApoB100 from human low-density lipoprotein. Preprint at bioRxiv https://doi.org/10.1101/2024.02.28.582555 (2024).

  • Lu, M. & Gursky, O. Aggregation and fusion of low-density lipoproteins in vivo and in vitro. Biomol. Concepts 4, 501–518 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Öörni, K. & Kovanen, P. T. Aggregation susceptibility of low-density lipoproteins—a novel modifiable biomarker of cardiovascular risk. J. Clin. Med. 10, 1769 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maruyama, I. N. Activation of transmembrane cell-surface receptors via a common mechanism? The “rotation model”. Bioessays 37, 959–967 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feixas, F., Lindert, S., Sinko, W. & McCammon, J. A. Exploring the role of receptor flexibility in structure-based drug discovery. Biophys. Chem. 186, 31–45 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Heuser, J. E. & Anderson, R. G. Hypertonic media inhibit receptor-mediated endocytosis by blocking clathrin-coated pit formation. J. Cell Biol. 108, 389–400 (1989).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Beglova, N., Jeon, H., Fisher, C. & Blacklow, S. C. Cooperation between fixed and low pH-inducible interfaces controls lipoprotein release by the LDL receptor. Mol. Cell 16, 281–292 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Havel, R. J., Eder, H. A. & Bragdon, J. H. The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum. J. Clin. Invest. 34, 1345–1353 (1955).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schumaker, V. N. & Puppione, D. L. Sequential flotation ultracentrifugation. Methods Enzymol. 128, 155–170 (1986).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gaubatz, J. W. et al. Dynamics of dense electronegative low density lipoproteins and their preferential association with lipoprotein phospholipase A2. J. Lipid Res. 48, 348–357 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Banerjee, S. et al. Proteolysis of the low density lipoprotein receptor by bone morphogenetic protein-1 regulates cellular cholesterol uptake. Sci. Rep. 9, 11416 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yost, S. A., Whidby, J., Khan, A. G., Wang, Y. & Marcotrigiano, J. Overcoming challenges of hepatitis C virus envelope glycoprotein production in mammalian cells. Methods Mol. Biol. 1911, 305–316 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, D. & Piszczek, G. Standard protocol for mass photometry experiments. Eur. Biophys. J. 50, 403–409 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bepler, T. et al. Positive-unlabeled convolutional neural networks for particle picking in cryo-electron micrographs. Nat. Methods 16, 1153–1160 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cardone, G., Heymann, J. B. & Steven, A. C. One number does not fit all: mapping local variations in resolution in cryo-EM reconstructions. J. Struct. Biol. 184, 226–236 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Sanchez-Garcia, R. et al. DeepEMhancer: a deep learning solution for cryo-EM volume post-processing. Commun. Biol. 4, 874 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jakobi, A. J., Wilmanns, M. & Sachse, C. Model-based local density sharpening of cryo-EM maps. eLife 6, e27131 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. D 75, 861–877 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Williams, C. J. et al. MolProbity: more and better reference data for improved all-atom structure validation. Protein Sci. 27, 293–315 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wessel, D. & Flugge, U. I. A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal. Biochem. 138, 141–143 (1984).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rappsilber, J., Mann, M. & Ishihama, Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat. Protoc. 2, 1896–1906 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mendes, M. L. et al. An integrated workflow for crosslinking mass spectrometry. Mol. Syst. Biol. 15, e8994 (2019).

  • Lenz, S. et al. Reliable identification of protein-protein interactions by crosslinking mass spectrometry. Nat. Commun. 12, 3564 (2021).

  • Kong, A. T., Leprevost, F. V., Avtonomov, D. M., Mellacheruvu, D. & Nesvizhskii, A. I. MSFragger: ultrafast and comprehensive peptide identification in mass spectrometry-based proteomics. Nat. Methods 14, 513–520 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • da Veiga Leprevost, F. et al. Philosopher: a versatile toolkit for shotgun proteomics data analysis. Nat. Methods 17, 869–870 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments