Thursday, March 13, 2025
No menu items!
HomeNatureStructure and mechanism of the plastid/parasite ATP/ADP translocator

Structure and mechanism of the plastid/parasite ATP/ADP translocator

  • Bonora, M. et al. ATP synthesis and storage. Purinergic Signal. 8, 343–357 (2012).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Ruprecht, J. J. & Kunji, E. R. S. Structural mechanism of transport of mitochondrial carriers. Annu. Rev. Biochem. 90, 535–558 (2021).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Omsland, A., Sixt, B. S., Horn, M. & Hackstadt, T. Chlamydial metabolism revisited: interspecies metabolic variability and developmental stage-specific physiologic activities. FEMS Microbiol. Rev. 38, 779–801 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Ende, R. J. & Derre, I. Host and bacterial glycolysis during Chlamydia trachomatis infection. Infect. Immun. 88, e00545-20 (2020).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Winkler, H. H. Rickettsial permeability. An ADP-ATP transport system. J. Biol. Chem. 251, 389–396 (1976).

    Article 
    PubMed 

    Google Scholar
     

  • Hatch, T. P., Al-Hossainy, E. & Silverman, J. A. Adenine nucleotide and lysine transport in Chlamydia psittaci. J. Bacteriol. 150, 662–670 (1982).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krause, D. C., Winkler, H. H. & Wood, D. O. Cloning and expression of the Rickettsia prowazekii ADP/ATP translocator in Escherichia coli. Proc. Natl Acad. Sci. USA 82, 3015–3019 (1985).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stephens, R. S. et al. Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis. Science 282, 754–759 (1998).

    Article 
    ADS 
    PubMed 
    MATH 

    Google Scholar
     

  • Andersson, S. G. et al. The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature 396, 133–140 (1998).

    Article 
    ADS 
    PubMed 
    MATH 

    Google Scholar
     

  • Kalman, S. et al. Comparative genomes of Chlamydia pneumoniae and C. trachomatis. Nat. Genet. 21, 385–389 (1999).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Tjaden, J. et al. Two nucleotide transport proteins in Chlamydia trachomatis, one for net nucleoside triphosphate uptake and the other for transport of energy. J. Bacteriol. 181, 1196–1202 (1999).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Katinka, M. D. et al. Genome sequence and gene compaction of the eukaryote parasite Encephalitozoon cuniculi. Nature 414, 450–453 (2001).

    Article 
    ADS 
    PubMed 
    MATH 

    Google Scholar
     

  • Tsaousis, A. D. et al. A novel route for ATP acquisition by the remnant mitochondria of Encephalitozoon cuniculi. Nature 453, 553–556 (2008).

    Article 
    ADS 
    PubMed 
    MATH 

    Google Scholar
     

  • Winkler, H. H. & Neuhaus, H. E. Non-mitochondrial ATP transport. Trends Biochem. Sci. 24, 64–68 (1999).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Linka, N. et al. Phylogenetic relationships of non-mitochondrial nucleotide transport proteins in bacteria and eukaryotes. Gene 306, 27–35 (2003).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Schmitz-Esser, S. et al. ATP/ADP translocases: a common feature of obligate intracellular amoebal symbionts related to Chlamydiae and Rickettsiae. J. Bacteriol. 186, 683–691 (2004).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Schmitz-Esser, S. et al. Lawsonia intracellularis contains a gene encoding a functional rickettsia-like ATP/ADP translocase for host exploitation. J. Bacteriol. 190, 5746–5752 (2008).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Vahling, C. M., Duan, Y. & Lin, H. Characterization of an ATP translocase identified in the destructive plant pathogen “Candidatus Liberibacter asiaticus”. J. Bacteriol. 192, 834–840 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Knab, S., Mushak, T. M., Schmitz-Esser, S., Horn, M. & Haferkamp, I. Nucleotide parasitism by Simkania negevensis (Chlamydiae). J. Bacteriol. 193, 225–235 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Graf, J. S. et al. Anaerobic endosymbiont generates energy for ciliate host by denitrification. Nature 591, 445–450 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Husnik, F. et al. Bacterial and archaeal symbioses with protists. Curr. Biol. 31, R862–R877 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Needham, D. M. et al. The microbiome of a bacterivorous marine choanoflagellate contains a resource-demanding obligate bacterial associate. Nat. Microbiol. 7, 1466–1479 (2022).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Heldt, H. W. Adenine nucleotide translocation in spinach chloroplasts. FEBS Lett. 5, 11–14 (1969).

    Article 
    PubMed 

    Google Scholar
     

  • Neuhaus, H. E., Thom, E., Mohlmann, T., Steup, M. & Kampfenkel, K. Characterization of a novel eukaryotic ATP/ADP translocator located in the plastid envelope of Arabidopsis thaliana L. Plant J. 11, 73–82 (1997).

    Article 
    PubMed 

    Google Scholar
     

  • Tjaden, J., Schwoppe, C., Mohlmann, T., Quick, P. W. & Neuhaus, H. E. Expression of a plastidic ATP/ADP transporter gene in Escherichia coli leads to a functional adenine nucleotide transport system in the bacterial cytoplasmic membrane. J. Biol. Chem. 273, 9630–9636 (1998).

    Article 
    PubMed 

    Google Scholar
     

  • Mohlmann, T. et al. Occurrence of two plastidic ATP/ADP transporters in Arabidopsis thaliana L.—molecular characterisation and comparative structural analysis of similar ATP/ADP translocators from plastids and Rickettsia prowazekii. Eur. J. Biochem. 252, 353–359 (1998).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Haferkamp, I., Fernie, A. R. & Neuhaus, H. E. Adenine nucleotide transport in plants: much more than a mitochondrial issue. Trends Plant Sci. 16, 507–515 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Greub, G. & Raoult, D. History of the ADP/ATP-translocase-encoding gene, a parasitism gene transferred from a Chlamydiales ancestor to plants 1 billion years ago. Appl. Environ. Microbiol. 69, 5530–5535 (2003).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Huang, J. & Gogarten, J. P. Did an ancient chlamydial endosymbiosis facilitate the establishment of primary plastids? Genome Biol. 8, R99 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tyra, H. M., Linka, M., Weber, A. P. & Bhattacharya, D. Host origin of plastid solute transporters in the first photosynthetic eukaryotes. Genome Biol. 8, R212 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nowack, E. C. M. & Weber, A. P. M. Genomics-informed insights into endosymbiotic organelle evolution in photosynthetic eukaryotes. Annu. Rev. Plant. Biol. 69, 51–84 (2018).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Mehta, A. P. et al. Engineering yeast endosymbionts as a step toward the evolution of mitochondria. Proc. Natl Acad. Sci. USA 115, 11796–11801 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Mehta, A. P. et al. Toward a synthetic yeast endosymbiont with a minimal genome. J. Am. Chem. Soc. 141, 13799–13802 (2019).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Cournoyer, J. E. et al. Engineering artificial photosynthetic life-forms through endosymbiosis. Nat. Commun. 13, 2254 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saier, M. H. Jr. Families of transmembrane sugar transport proteins. Mol. Microbiol. 35, 699–710 (2000).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Trentmann, O., Horn, M., van Scheltinga, A. C., Neuhaus, H. E. & Haferkamp, I. Enlightening energy parasitism by analysis of an ATP/ADP transporter from chlamydiae. PLoS Biol. 5, e231 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Trentmann, O., Jung, B., Neuhaus, H. E. & Haferkamp, I. Nonmitochondrial ATP/ADP transporters accept phosphate as third substrate. J. Biol. Chem. 283, 36486–36493 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Winkler, H. H. & Daugherty, R. M. Regulatory role of phosphate and other anions in transport of ADP and ATP by Rickettsia prowazekii. J. Bacteriol. 160, 76–79 (1984).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Deniaud, A. et al. Oligomeric status and nucleotide binding properties of the plastid ATP/ADP transporter 1: toward a molecular understanding of the transport mechanism. PLoS ONE 7, e32325 (2012).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haferkamp, I. et al. A candidate NAD+ transporter in an intracellular bacterial symbiont related to Chlamydiae. Nature 432, 622–625 (2004).

    Article 
    ADS 
    PubMed 
    MATH 

    Google Scholar
     

  • Haferkamp, I. et al. Tapping the nucleotide pool of the host: novel nucleotide carrier proteins of Protochlamydia amoebophila. Mol. Microbiol. 60, 1534–1545 (2006).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Audia, J. P. & Winkler, H. H. Study of the five Rickettsia prowazekii proteins annotated as ATP/ADP translocases (Tlc): only Tlc1 transports ATP/ADP, while Tlc4 and Tlc5 transport other ribonucleotides. J. Bacteriol. 188, 6261–6268 (2006).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ast, M. et al. Diatom plastids depend on nucleotide import from the cytosol. Proc. Natl Acad. Sci. USA 106, 3621–3626 (2009).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Fisher, D. J., Fernandez, R. E. & Maurelli, A. T. Chlamydia trachomatis transports NAD via the Npt1 ATP/ADP translocase. J. Bacteriol. 195, 3381–3386 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heinz, E. et al. Plasma membrane-located purine nucleotide transport proteins are key components for host exploitation by microsporidian intracellular parasites. PLoS Pathog. 10, e1004547 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Major, P., Embley, T. M. & Williams, T. A. Phylogenetic diversity of NTT nucleotide transport proteins in free-living and parasitic bacteria and eukaryotes. Genome Biol. Evol. 9, 480–487 (2017).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Dean, P. et al. Transporter gene acquisition and innovation in the evolution of Microsporidia intracellular parasites. Nat. Commun. 9, 1709 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Malyshev, D. A. et al. A semi-synthetic organism with an expanded genetic alphabet. Nature 509, 385–388 (2014).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Zhang, Y. et al. A semi-synthetic organism that stores and retrieves increased genetic information. Nature 551, 644–647 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Trentmann, O., Decker, C., Winkler, H. H. & Neuhaus, H. E. Charged amino-acid residues in transmembrane domains of the plastidic ATP/ADP transporter from Arabidopsis are important for transport efficiency, substrate specificity, and counter exchange properties. Eur. J. Biochem. 267, 4098–4105 (2000).

    Article 
    PubMed 

    Google Scholar
     

  • Alexeyev, M. F. & Winkler, H. H. Membrane topology of the Rickettsia prowazekii ATP/ADP translocase revealed by novel dual pholac reporters. J. Mol. Biol. 285, 1503–1513 (1999).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Pebay-Peyroula, E. et al. Structure of mitochondrial ADP/ATP carrier in complex with carboxyatractyloside. Nature 426, 39–44 (2003).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Ruprecht, J. J. et al. The molecular mechanism of transport by the mitochondrial ADP/ATP carrier. Cell 176, 435–447 (2019).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Traut, T. W. Physiological concentrations of purines and pyrimidines. Mol. Cell. Biochem. 140, 1–22 (1994).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Law, C. J., Maloney, P. C. & Wang, D. N. Ins and outs of major facilitator superfamily antiporters. Annu. Rev. Microbiol. 62, 289–305 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yan, N. Structural biology of the major facilitator superfamily transporters. Annu. Rev. Biophys. 44, 257–283 (2015).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Moodie, S. L., Mitchell, J. B. & Thornton, J. M. Protein recognition of adenylate: an example of a fuzzy recognition template. J. Mol. Biol. 263, 486–500 (1996).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Mavridou, V. et al. Substrate binding in the mitochondrial ADP/ATP carrier is a step-wise process guiding the structural changes in the transport cycle. Nat. Commun. 13, 3585 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Kunji, E. R. S. & Ruprecht, J. J. The mitochondrial ADP/ATP carrier exists and functions as a monomer. Biochem. Soc. Trans. 48, 1419–1432 (2020).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Feldman, A. W. et al. A tool for the import of natural and unnatural nucleoside triphosphates into bacteria. J. Am. Chem. Soc. 140, 1447–1454 (2018).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Goehring, A. et al. Screening and large-scale expression of membrane proteins in mammalian cells for structural studies. Nat. Protoc. 9, 2574–2585 (2014).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Zimmermann, I. et al. Generation of synthetic nanobodies against delicate proteins. Nat. Protoc. 15, 1707–1741 (2020).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Wu, X. & Rapoport, T. A. Cryo-EM structure determination of small proteins by nanobody-binding scaffolds (Legobodies). Proc. Natl Acad. Sci. USA 118, e2115001118 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. CryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Terwilliger, T. C., Ludtke, S. J., Read, R. J., Adams, P. D. & Afonine, P. V. Improvement of cryo-EM maps by density modification. Nat. Methods 17, 923–927 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta. Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta. Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta. Crystallogr. D Biol. Crystallogr. 66, 12–21 (2010).

    Article 
    ADS 
    PubMed 
    MATH 

    Google Scholar
     

  • PyMOL Molecular Graphics System v.2.0 (Schrödinger, 2017).

  • Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments