Campbell, K. P. & Kahl, S. D. Association of dystrophin and an integral membrane glycoprotein. Nature 338, 259â262 (1989).
Ibraghimov-Beskrovnaya, O. et al. Primary structure of dystrophin-associated glycoproteins linking dystrophin to the extracellular matrix. Nature 355, 696â702 (1992).
Ervasti, J. M. & Campbell, K. P. A role for the dystrophin-glycoprotein complex as a transmembrane linker between laminin and actin. J. Cell Biol. 122, 809â823 (1993).
McNally, E. M. & Pytel, P. Muscle diseases: the muscular dystrophies. Annu. Rev. Pathol. 2, 87â109 (2007).
Duan, D, S., Goemans, N., Takeda, S., Mercuri, E. & Aartsma-Rus, A. Duchenne muscular dystrophy. Nat. Rev. Dis. Primers 7, 13 (2021).
Durbeej, M. & Campbell, K. P. Muscular dystrophies involving the dystrophin-glycoprotein complex: an overview of current mouse models. Curr. Opin. Genet. Dev. 12, 349â361 (2002).
Wilson, D. G. S., Tinker, A. & Iskratsch, T. The role of the dystrophin glycoprotein complex in muscle cell mechanotransduction. Commun. Biol. 5, 1022 (2022).
Gao, Q. Q. & McNally, E. M. The dystrophin complex: structure, function, and implications for therapy. Compr. Physiol. 5, 1223â1239 (2015).
Gumerson, J. D. & Michele, D. E. The dystrophin-glycoprotein complex in the prevention of muscle damage. J. Biomed. Biotechnol. 2011, 210797 (2011).
Lapidos, K. A., Kakkar, R. & McNally, E. M. The dystrophin glycoprotein complex: signaling strength and integrity for the sarcolemma. Circ. Res. 94, 1023â1031 (2004).
Belhasan, D. C. & Akaaboune, M. The role of the dystrophin glycoprotein complex on the neuromuscular system. Neurosci. Lett. 722, 134833 (2020).
Pilgram, G. S. K., Potikanond, S., Baines, R. A., Fradkin, L. G. & Noordermeer, J. N. The roles of the dystrophin-associated glycoprotein complex at the synapse. Mol. Neurobiol. 41, 1â21 (2010).
Constantin, B. Dystrophin complex functions as a scaffold for signalling proteins. Boichim. Biophys. Acta 1838, 635â642 (2014).
Hoffman, E. P., Brown, R. H. & Kunkel, L. M. Dystrophinâthe protein product of the Duchenne muscular-dystrophy locus. Cell 51, 919â928 (1987).
Koenig, M., Monaco, A. P. & Kunkel, L. M. The complete sequence of dystrophin predicts a rod-shaped cytoskeletal protein. Cell 53, 219â228 (1988).
Rybakova, I. N., Patel, J. R. & Ervasti, J. M. The dystrophin complex forms a mechanically strong link between the sarcolemma and costameric actin. J. Cell Biol. 150, 1209â1214 (2000).
Bhat, H. F. et al. ABC of multifaceted dystrophin glycoprotein complex (DGC). J. Cell. Physiol. 233, 5142â5159 (2018).
Deyst, K. A., Bowe, M. A., Leszyk, J. D. & Fallon, J. R. The α-dystroglycan-β-dystroglycan complex. Membrane organization and relationship to an agrin receptor. J. Biol. Chem. 270, 25956â25959 (1995).
Holt, K. H., Crosbie, R. H., Venzke, D. P. & Campbell, K. P. Biosynthesis of dystroglycan: processing of a precursor propeptide. FEBS Lett. 468, 79â83 (2000).
Martin, P. T. Dystroglycan glycosylation and its role in matrix binding in skeletal muscle. Glycobiology 13, 55Râ66R (2003).
Sciandra, F. et al. Identification of the β-dystroglycan binding epitope within the C-terminal region of α-dystroglycan. Eur. J. Biochem. 268, 4590â4597 (2001).
Crosbie, R. H., Heighway, J., Venzke, D. P., Lee, J. C. & Campbell, K. P. Sarcospan, the 25-kDa transmembrane component of the dystrophin-glycoprotein complex. J. Biol. Chem. 272, 31221â31224 (1997).
Wein, N., Alfano, L. & Flanigan, K. M. Genetics and emerging treatments for Duchenne and Becker muscular dystrophy. Pediatr. Clin. North. Am. 62, 723â742 (2015).
Mah, J. K. et al. A systematic review and meta-analysis on the epidemiology of Duchenne and Becker muscular dystrophy. Neuromuscular Disord 24, 482â491 (2014).
Nigro, V. & Savarese, M. Genetic basis of limb-girdle muscular dystrophies: the 2014 update. Acta Myol 33, 1â12 (2014).
Brown, S. C. et al. Abnormalities in alpha-dystroglycan expression in MDC1C and LGMD2I muscular dystrophies. Am. J. Pathol. 164, 727â737 (2004).
Michele, D. E. et al. Post-translational disruption of dystroglycan-ligand interactions in congenital muscular dystrophies. Nature 418, 417â422 (2002).
Barresi, R. & Campbell, K. P. Dystroglycan: from biosynthesis to pathogenesis of human disease. J. Cell Sci. 119, 199â207 (2006).
Waite, A., Brown, S. C. & Blake, D. J. The dystrophin-glycoprotein complex in brain development and disease. Trends Neurosci. 35, 487â496 (2012).
Tsubata, S. et al. Mutations in the human δ-sarcoglycan gene in familial and sporadic dilated cardiomyopathy. J. Clin. Invest. 106, 655â662 (2000).
Guiraud, S. et al. The pathogenesis and therapy of muscular dystrophies. Annu. Rev. Genomics Hum. Genet. 16, 281â308 (2015).
Norwood, F. L. M., Sutherland-Smith, A. J., Keep, N. H. & Kendrick-Jones, J. The structure of the N-terminal actin-binding domain of human dystrophin and how mutations in this domain may cause Duchenne or Becker muscular dystrophy. Structure 8, 481â491 (2000).
Muthu, M., Richardson, K. A. & Sutherland-Smith, A. J. The crystal structures of dystrophin and utrophin spectrin repeats: implications for domain boundaries. PLoS ONE 7, e40066 (2012).
Huang, X. et al. Structure of a WW domain containing fragment of dystrophin in complex with β-dystroglycan. Nat. Struct. Biol. 7, 634â638 (2000).
Bozic, D., Sciandra, F., Lamba, D. & Brancaccio, A. The structure of the N-terminal region of murine skeletal muscle α-dystroglycan discloses a modular architecture. J. Biol. Chem. 279, 44812â44816 (2004).
Briggs, D. C. et al. Structural basis of laminin binding to the LARGE glycans on dystroglycan. Nat. Chem. Biol. 12, 810â814 (2016).
Ramaswamy, K. S. et al. Lateral transmission of force is impaired in skeletal muscles of dystrophic mice and very old rats. J. Physiol. 589, 1195â1208 (2011).
Singh, J. et al. Proteolytic enzymes and altered glycosylation modulate dystroglycan function in carcinoma cells. Cancer Res. 64, 6152â6159 (2004).
Jung, D., Yang, B., Meyer, J., Chamberlain, J. S. & Campbell, K. P. Identification and characterization of the dystrophin anchoring site on beta-dystroglycan. J. Biol. Chem. 270, 27305â27310 (1995).
Chan, Y. M. & Kunkel, L. M. In vitro expressed dystrophin fragments do not associate with each other. FEBS Lett. 410, 153â159 (1997).
SadouletPuccio, H. M., Rajala, M. & Kunkel, L. M. Dystrobrevin and dystrophin: An interaction through coiled-coil motifs. Proc. Natl Acad. Sci. USA 94, 12413â12418 (1997).
Swiderski, K. et al. Phosphorylation within the cysteine-rich region of dystrophin enhances its association with β-dystroglycan and identifies a potential novel therapeutic target for skeletal muscle wasting. Hum. Mol. Genet. 23, 6697â6711 (2014).
Ilsley, J. L., Sudol, M. & Winder, S. J. The interaction of dystrophin with β-dystroglycan is regulated by tyrosine phosphorylation. Cell Signal 13, 625â632 (2001).
Ge, X. & Wang, J. W. Structural mechanism of bacteriophage lambda tailâs interaction with the bacterial receptor. Nat. Commun. 15, 4185 (2024).
Hynes, R. O. Integrins: bidirectional, allosteric signaling machines. Cell 110, 673â687 (2002).
Luo, B. H., Carman, C. V. & Springer, T. A. Structural basis of integrin regulation and signaling. Annu. Rev. Immunol. 25, 619â647 (2007).
Guo, C. et al. Absence of α7 integrin in dystrophin-deficient mice causes a myopathy similar to Duchenne muscular dystrophy. Hum. Mol. Genet. 15, 989â998 (2006).
Rooney, J. E. et al. Severe muscular dystrophy in mice that lack dystrophin and α7 integrin. J. Cell Sci. 119, 2185â2195 (2006).
Hodges, B. L. et al. Altered expression of the α7β1 integrin in human and murine muscular dystrophies. J. Cell Sci. 110, 2873â2881 (1997).
Marshall, J. L. & Crosbie-Watson, R. H. Sarcospan: a small protein with large potential for Duchenne muscular dystrophy. Skelet. Muscle 3, 1 (2013).
Yan, Z. et al. Structure of the rabbit ryanodine receptor RyR1 at near-atomic resolution. Nature 517, 50â55 (2015).
Diniz, G. et al. Sarcolemmal alpha and gamma sarcoglycan protein deficiencies in Turkish siblings with a novel missense mutation in the alpha sarcoglycan gene. Pediatr. Neurol. 50, 640â647 (2014).
Duggan, D. J. et al. Mutations in the sarcoglycan genes in patients with myopathy. New Engl. J. Med. 336, 618â624 (1997).
Piccolo, F. et al. Primary adhalinopathyâa common-cause of autosomal recessive muscular-dystrophy of variable severity. Nat. Genet. 10, 243â245 (1995).
Carrie, A. et al. Mutational diversity and hot spots in the alpha-sarcoglycan gene in autosomal recessive muscular dystrophy (LGMD2D). J. Med. Genet. 34, 470â475 (1997).
Saha, M. et al. Impact of PYROXD1 deficiency on cellular respiration and correlations with genetic analyses of limb-girdle muscular dystrophy in Saudi Arabia and Sudan. Physiol. Genomics 50, 929â939 (2018).
Kawai, H. et al. Adhalin gene mutations in patients with autosomal recessive childhood onset muscular dystrophy with adhalin deficiency. J. Clin. Invest. 96, 1202â1207 (1995).
Duclos, F. et al. β-sarcoglycan: genomic analysis and identification of a novel missense mutation in the LGMD2E Amish isolate. Neuromusc. Disord. 8, 30â38 (1998).
dos Santos, M. R., Jorge, P., Ribeiro, E. M., Pires, M. M. & Guimaraes, A. Noval mutation (Y184C) in exon 4 of the beta-sarcoglycan gene identified in a Portuguese patient. Mutations in brief no. 177. Hum. Mutat. 12, 214â215 (1998).
Bonnemann, C. G. et al. Genomic screening for beta-sarcoglycan gene mutations: Missense mutations may cause severe limb-girdle muscular dystrophy type 2E (LGMD 2E). Hum. Mol. Genet. 5, 1953â1961 (1996).
Bönnemann, C. G. et al. LGMD 2E in Tunisia is caused by a homozygous missense mutation in β-sarcoglycan exon 3. Neuromusc. Disord. 8, 193â197 (1998).
Vermeer, S. et al. Novel mutations in three patients with LGMD2C with phenotypic differences. Pediatr. Neurol. 30, 291â294 (2004).
Nowak, K. J. et al. Severe γ-sarcoglycanopathy caused by a novel missense mutation and a large deletion. Neuromusc. Disord. 10, 100â107 (2000).
Crosbie, R. H. et al. Molecular and genetic characterization of sarcospan:: insights into sarcoglycanâsarcospan interactions. Hum. Mol. Genet. 9, 2019â2027 (2000).
Piccolo, F. et al. A founder mutation in the γ-sarcoglycan gene of Gypsies possibly predating their migration out of India. Hum. Mol. Genet. 5, 2019â2022 (1996).
Duggan, D. J. et al. Mutations in the δ-sarcoglycan gene are a rare cause of autosomal recessive limb-girdle muscular dystrophy (LGMD2). Neurogenetics 1, 49â58 (1997).
Nigro, V. et al. Identification of a novel sarcoglycan gene at 5q33 encoding a sarcolemmal 35 kDa glycoprotein. Hum. Mol. Genet. 5, 1179â1186 (1996).
Moreira, E. S. et al. A first missense mutation in the δ sarcoglycan gene associated with a severe phenotype and frequency of limb-girdle muscular dystrophy type 2 F (LGMD2F) in Brazilian sarcoglycanopathies. J. Med. Genet. 35, 951â953 (1998).
Geis, T. et al. Homozygous dystroglycan mutation associated with a novel muscle-eye-brain disease-like phenotype with multicystic leucodystrophy. Neurogenetics 14, 205â213 (2013).
Dai, Y. et al. Whole exome sequencing identified a novel DAG1 mutation in a patient with rare, mild and late age of onset muscular dystrophy-dystroglycanopathy. J. Cell. Mol. Med. 23, 811â818 (2019).
Feng, J., Yan, J., Buzin, C. H., Towbin, J. A. & Sommer, S. S. Mutations in the dystrophin gene are associated with sporadic dilated cardiomyopathy. Mol. Genet. Metab. 77, 119â126 (2002).
Flanigan, K. M. et al. Rapid direct sequence analysis of the dystrophin gene. Am. J. Hum. Genet. 72, 931â939 (2003).
Vulin, A. et al. The ZZ domain of dystrophin in DMD: making sense of missense mutations. Hum. Mutat. 35, 257â264 (2014).
Goldberg, L. R. et al. A dystrophin missense mutation showing persistence of dystrophin and dystrophin-associated proteins yet a severe phenotype. Ann. Neurol. 44, 971â976 (1998).
Lenk, U. et al. A cysteine 3340 substitution in the dystroglycan-binding domain of dystrophin associated with Duchenne muscular dystrophy, mental retardation and absence of the ERG b-wave. Hum. Mol. Genet. 5, 973â975 (1996).
Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331â332 (2017).
Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290â296 (2017).
Punjani, A., Zhang, H. & Fleet, D. J. Non-uniform refinement: adaptive regularization improves single-particle cryo-EM reconstruction. Nat. Methods 17, 1214â1221 (2020).
Pettersen, E. F. et al. UCSF chimeraâa visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605â1612 (2004).
Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 30, 70â82 (2021).
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583â589 (2021).
Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126â2132 (2004).
Afonine, P. V. et al. Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr. D 74, 531â544 (2018).