Thursday, January 23, 2025
No menu items!
HomeNatureStructure and assembly of the dystrophin glycoprotein complex

Structure and assembly of the dystrophin glycoprotein complex

  • Campbell, K. P. & Kahl, S. D. Association of dystrophin and an integral membrane glycoprotein. Nature 338, 259–262 (1989).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ibraghimov-Beskrovnaya, O. et al. Primary structure of dystrophin-associated glycoproteins linking dystrophin to the extracellular matrix. Nature 355, 696–702 (1992).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ervasti, J. M. & Campbell, K. P. A role for the dystrophin-glycoprotein complex as a transmembrane linker between laminin and actin. J. Cell Biol. 122, 809–823 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McNally, E. M. & Pytel, P. Muscle diseases: the muscular dystrophies. Annu. Rev. Pathol. 2, 87–109 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Duan, D, S., Goemans, N., Takeda, S., Mercuri, E. & Aartsma-Rus, A. Duchenne muscular dystrophy. Nat. Rev. Dis. Primers 7, 13 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Durbeej, M. & Campbell, K. P. Muscular dystrophies involving the dystrophin-glycoprotein complex: an overview of current mouse models. Curr. Opin. Genet. Dev. 12, 349–361 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wilson, D. G. S., Tinker, A. & Iskratsch, T. The role of the dystrophin glycoprotein complex in muscle cell mechanotransduction. Commun. Biol. 5, 1022 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao, Q. Q. & McNally, E. M. The dystrophin complex: structure, function, and implications for therapy. Compr. Physiol. 5, 1223–1239 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gumerson, J. D. & Michele, D. E. The dystrophin-glycoprotein complex in the prevention of muscle damage. J. Biomed. Biotechnol. 2011, 210797 (2011).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lapidos, K. A., Kakkar, R. & McNally, E. M. The dystrophin glycoprotein complex: signaling strength and integrity for the sarcolemma. Circ. Res. 94, 1023–1031 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Belhasan, D. C. & Akaaboune, M. The role of the dystrophin glycoprotein complex on the neuromuscular system. Neurosci. Lett. 722, 134833 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pilgram, G. S. K., Potikanond, S., Baines, R. A., Fradkin, L. G. & Noordermeer, J. N. The roles of the dystrophin-associated glycoprotein complex at the synapse. Mol. Neurobiol. 41, 1–21 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Constantin, B. Dystrophin complex functions as a scaffold for signalling proteins. Boichim. Biophys. Acta 1838, 635–642 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Hoffman, E. P., Brown, R. H. & Kunkel, L. M. Dystrophin—the protein product of the Duchenne muscular-dystrophy locus. Cell 51, 919–928 (1987).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Koenig, M., Monaco, A. P. & Kunkel, L. M. The complete sequence of dystrophin predicts a rod-shaped cytoskeletal protein. Cell 53, 219–228 (1988).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rybakova, I. N., Patel, J. R. & Ervasti, J. M. The dystrophin complex forms a mechanically strong link between the sarcolemma and costameric actin. J. Cell Biol. 150, 1209–1214 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bhat, H. F. et al. ABC of multifaceted dystrophin glycoprotein complex (DGC). J. Cell. Physiol. 233, 5142–5159 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Deyst, K. A., Bowe, M. A., Leszyk, J. D. & Fallon, J. R. The α-dystroglycan-β-dystroglycan complex. Membrane organization and relationship to an agrin receptor. J. Biol. Chem. 270, 25956–25959 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Holt, K. H., Crosbie, R. H., Venzke, D. P. & Campbell, K. P. Biosynthesis of dystroglycan: processing of a precursor propeptide. FEBS Lett. 468, 79–83 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Martin, P. T. Dystroglycan glycosylation and its role in matrix binding in skeletal muscle. Glycobiology 13, 55R–66R (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sciandra, F. et al. Identification of the β-dystroglycan binding epitope within the C-terminal region of α-dystroglycan. Eur. J. Biochem. 268, 4590–4597 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Crosbie, R. H., Heighway, J., Venzke, D. P., Lee, J. C. & Campbell, K. P. Sarcospan, the 25-kDa transmembrane component of the dystrophin-glycoprotein complex. J. Biol. Chem. 272, 31221–31224 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wein, N., Alfano, L. & Flanigan, K. M. Genetics and emerging treatments for Duchenne and Becker muscular dystrophy. Pediatr. Clin. North. Am. 62, 723–742 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Mah, J. K. et al. A systematic review and meta-analysis on the epidemiology of Duchenne and Becker muscular dystrophy. Neuromuscular Disord 24, 482–491 (2014).

    Article 

    Google Scholar
     

  • Nigro, V. & Savarese, M. Genetic basis of limb-girdle muscular dystrophies: the 2014 update. Acta Myol 33, 1–12 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brown, S. C. et al. Abnormalities in alpha-dystroglycan expression in MDC1C and LGMD2I muscular dystrophies. Am. J. Pathol. 164, 727–737 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Michele, D. E. et al. Post-translational disruption of dystroglycan-ligand interactions in congenital muscular dystrophies. Nature 418, 417–422 (2002).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Barresi, R. & Campbell, K. P. Dystroglycan: from biosynthesis to pathogenesis of human disease. J. Cell Sci. 119, 199–207 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Waite, A., Brown, S. C. & Blake, D. J. The dystrophin-glycoprotein complex in brain development and disease. Trends Neurosci. 35, 487–496 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tsubata, S. et al. Mutations in the human δ-sarcoglycan gene in familial and sporadic dilated cardiomyopathy. J. Clin. Invest. 106, 655–662 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guiraud, S. et al. The pathogenesis and therapy of muscular dystrophies. Annu. Rev. Genomics Hum. Genet. 16, 281–308 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Norwood, F. L. M., Sutherland-Smith, A. J., Keep, N. H. & Kendrick-Jones, J. The structure of the N-terminal actin-binding domain of human dystrophin and how mutations in this domain may cause Duchenne or Becker muscular dystrophy. Structure 8, 481–491 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Muthu, M., Richardson, K. A. & Sutherland-Smith, A. J. The crystal structures of dystrophin and utrophin spectrin repeats: implications for domain boundaries. PLoS ONE 7, e40066 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, X. et al. Structure of a WW domain containing fragment of dystrophin in complex with β-dystroglycan. Nat. Struct. Biol. 7, 634–638 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bozic, D., Sciandra, F., Lamba, D. & Brancaccio, A. The structure of the N-terminal region of murine skeletal muscle α-dystroglycan discloses a modular architecture. J. Biol. Chem. 279, 44812–44816 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Briggs, D. C. et al. Structural basis of laminin binding to the LARGE glycans on dystroglycan. Nat. Chem. Biol. 12, 810–814 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ramaswamy, K. S. et al. Lateral transmission of force is impaired in skeletal muscles of dystrophic mice and very old rats. J. Physiol. 589, 1195–1208 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Singh, J. et al. Proteolytic enzymes and altered glycosylation modulate dystroglycan function in carcinoma cells. Cancer Res. 64, 6152–6159 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jung, D., Yang, B., Meyer, J., Chamberlain, J. S. & Campbell, K. P. Identification and characterization of the dystrophin anchoring site on beta-dystroglycan. J. Biol. Chem. 270, 27305–27310 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chan, Y. M. & Kunkel, L. M. In vitro expressed dystrophin fragments do not associate with each other. FEBS Lett. 410, 153–159 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • SadouletPuccio, H. M., Rajala, M. & Kunkel, L. M. Dystrobrevin and dystrophin: An interaction through coiled-coil motifs. Proc. Natl Acad. Sci. USA 94, 12413–12418 (1997).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Swiderski, K. et al. Phosphorylation within the cysteine-rich region of dystrophin enhances its association with β-dystroglycan and identifies a potential novel therapeutic target for skeletal muscle wasting. Hum. Mol. Genet. 23, 6697–6711 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ilsley, J. L., Sudol, M. & Winder, S. J. The interaction of dystrophin with β-dystroglycan is regulated by tyrosine phosphorylation. Cell Signal 13, 625–632 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ge, X. & Wang, J. W. Structural mechanism of bacteriophage lambda tail’s interaction with the bacterial receptor. Nat. Commun. 15, 4185 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hynes, R. O. Integrins: bidirectional, allosteric signaling machines. Cell 110, 673–687 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Luo, B. H., Carman, C. V. & Springer, T. A. Structural basis of integrin regulation and signaling. Annu. Rev. Immunol. 25, 619–647 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo, C. et al. Absence of α7 integrin in dystrophin-deficient mice causes a myopathy similar to Duchenne muscular dystrophy. Hum. Mol. Genet. 15, 989–998 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rooney, J. E. et al. Severe muscular dystrophy in mice that lack dystrophin and α7 integrin. J. Cell Sci. 119, 2185–2195 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hodges, B. L. et al. Altered expression of the α7β1 integrin in human and murine muscular dystrophies. J. Cell Sci. 110, 2873–2881 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Marshall, J. L. & Crosbie-Watson, R. H. Sarcospan: a small protein with large potential for Duchenne muscular dystrophy. Skelet. Muscle 3, 1 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yan, Z. et al. Structure of the rabbit ryanodine receptor RyR1 at near-atomic resolution. Nature 517, 50–55 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Diniz, G. et al. Sarcolemmal alpha and gamma sarcoglycan protein deficiencies in Turkish siblings with a novel missense mutation in the alpha sarcoglycan gene. Pediatr. Neurol. 50, 640–647 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Duggan, D. J. et al. Mutations in the sarcoglycan genes in patients with myopathy. New Engl. J. Med. 336, 618–624 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Piccolo, F. et al. Primary adhalinopathy—a common-cause of autosomal recessive muscular-dystrophy of variable severity. Nat. Genet. 10, 243–245 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Carrie, A. et al. Mutational diversity and hot spots in the alpha-sarcoglycan gene in autosomal recessive muscular dystrophy (LGMD2D). J. Med. Genet. 34, 470–475 (1997).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saha, M. et al. Impact of PYROXD1 deficiency on cellular respiration and correlations with genetic analyses of limb-girdle muscular dystrophy in Saudi Arabia and Sudan. Physiol. Genomics 50, 929–939 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kawai, H. et al. Adhalin gene mutations in patients with autosomal recessive childhood onset muscular dystrophy with adhalin deficiency. J. Clin. Invest. 96, 1202–1207 (1995).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Duclos, F. et al. β-sarcoglycan: genomic analysis and identification of a novel missense mutation in the LGMD2E Amish isolate. Neuromusc. Disord. 8, 30–38 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • dos Santos, M. R., Jorge, P., Ribeiro, E. M., Pires, M. M. & Guimaraes, A. Noval mutation (Y184C) in exon 4 of the beta-sarcoglycan gene identified in a Portuguese patient. Mutations in brief no. 177. Hum. Mutat. 12, 214–215 (1998).

    PubMed 

    Google Scholar
     

  • Bonnemann, C. G. et al. Genomic screening for beta-sarcoglycan gene mutations: Missense mutations may cause severe limb-girdle muscular dystrophy type 2E (LGMD 2E). Hum. Mol. Genet. 5, 1953–1961 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bönnemann, C. G. et al. LGMD 2E in Tunisia is caused by a homozygous missense mutation in β-sarcoglycan exon 3. Neuromusc. Disord. 8, 193–197 (1998).

    Article 
    PubMed 

    Google Scholar
     

  • Vermeer, S. et al. Novel mutations in three patients with LGMD2C with phenotypic differences. Pediatr. Neurol. 30, 291–294 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Nowak, K. J. et al. Severe γ-sarcoglycanopathy caused by a novel missense mutation and a large deletion. Neuromusc. Disord. 10, 100–107 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Crosbie, R. H. et al. Molecular and genetic characterization of sarcospan:: insights into sarcoglycan–sarcospan interactions. Hum. Mol. Genet. 9, 2019–2027 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Piccolo, F. et al. A founder mutation in the γ-sarcoglycan gene of Gypsies possibly predating their migration out of India. Hum. Mol. Genet. 5, 2019–2022 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Duggan, D. J. et al. Mutations in the δ-sarcoglycan gene are a rare cause of autosomal recessive limb-girdle muscular dystrophy (LGMD2). Neurogenetics 1, 49–58 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nigro, V. et al. Identification of a novel sarcoglycan gene at 5q33 encoding a sarcolemmal 35 kDa glycoprotein. Hum. Mol. Genet. 5, 1179–1186 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moreira, E. S. et al. A first missense mutation in the δ sarcoglycan gene associated with a severe phenotype and frequency of limb-girdle muscular dystrophy type 2 F (LGMD2F) in Brazilian sarcoglycanopathies. J. Med. Genet. 35, 951–953 (1998).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Geis, T. et al. Homozygous dystroglycan mutation associated with a novel muscle-eye-brain disease-like phenotype with multicystic leucodystrophy. Neurogenetics 14, 205–213 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dai, Y. et al. Whole exome sequencing identified a novel DAG1 mutation in a patient with rare, mild and late age of onset muscular dystrophy-dystroglycanopathy. J. Cell. Mol. Med. 23, 811–818 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Feng, J., Yan, J., Buzin, C. H., Towbin, J. A. & Sommer, S. S. Mutations in the dystrophin gene are associated with sporadic dilated cardiomyopathy. Mol. Genet. Metab. 77, 119–126 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Flanigan, K. M. et al. Rapid direct sequence analysis of the dystrophin gene. Am. J. Hum. Genet. 72, 931–939 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vulin, A. et al. The ZZ domain of dystrophin in DMD: making sense of missense mutations. Hum. Mutat. 35, 257–264 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Goldberg, L. R. et al. A dystrophin missense mutation showing persistence of dystrophin and dystrophin-associated proteins yet a severe phenotype. Ann. Neurol. 44, 971–976 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lenk, U. et al. A cysteine 3340 substitution in the dystroglycan-binding domain of dystrophin associated with Duchenne muscular dystrophy, mental retardation and absence of the ERG b-wave. Hum. Mol. Genet. 5, 973–975 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Punjani, A., Zhang, H. & Fleet, D. J. Non-uniform refinement: adaptive regularization improves single-particle cryo-EM reconstruction. Nat. Methods 17, 1214–1221 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pettersen, E. F. et al. UCSF chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Afonine, P. V. et al. Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr. D 74, 531–544 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments