Bond, G. M., Robertson, I. M. & Birnbaum, H. K. The influence of hydrogen on deformation and fracture processes in high-strength aluminum alloys. Acta Metall. 35, 2289–2296 (1987).
Scully, J. R., Young, G. A. & Smith, S. W. in Gaseous Hydrogen Embrittlement of Materials in Energy Technologies (eds Gangloff, R. P. & Somerday, B. P.) 707–768 (Woodhead Publishing, 2012).
Liu, X. M. et al. Transmission electron microscopic observations of embrittlement of an aluminum alloy by liquid metal. Mater. Sci. Eng. A 55, 851–857 (1999).
Zhao, H. et al. Hydrogen trapping and embrittlement in high-strength Al alloys. Nature 602, 437–441 (2022).
Wang, Y. et al. Switching nanoprecipitates to resist hydrogen embrittlement in high-strength aluminum alloys. Nat. Commun. 13, 6860 (2022).
Xu, Y. T. et al. Suppressed hydrogen embrittlement of high-strength Al alloys by Mn-rich intermetallic compound particles. Acta Mater. 236, 118110 (2022).
Knipling, K. E., Dunand, D. C. & Seidman, D. N. Criteria for developing castable, creep-resistant aluminum-based alloys – a review. Z. Metall. 97, 246–265 (2006).
Liu, G. et al. Experiment and multiscale modeling of the coupled influence of constituents and precipitates on the ductile fracture of heat-treatable aluminum alloys. Acta Mater. 53, 3459–3468 (2005).
Urban, K. & Feuerbacher, M. Structurally complex alloy phases. J. Non Cryst. Solids 334, 143–150 (2004).
Dubois, J. M. & Belin-Ferré, E. (eds) Complex Metallic Alloys: Fundamentals and Applications (Wiley, 2010).
Samson, S. The crystal structure of the phase β-Mg2Al3. Acta Crystal. 19, 401–413 (1965).
Feuerbacher, M. et al. The Samson phase, β-Mg2Al3, revisited. Z. Kristal. 222, 259–288 (2007).
Blatov, V. A., Llyushin, G. D. & Proserplo, D. M. Nanocluster model of intermetallic compounds with giant unit cells: β, β′-Mg2Al3 polymorphs. Inorg. Chem. 49, 1811–1818 (2010).
Chen, Y.-S. et al. Observation of hydrogen trapping at dislocations, grain boundaries, and precipitates. Science 367, 171–175 (2020).
Yan, J. & Hodge, A. M. Study of β precipitation and layer structure formation in Al 5083: the role of dispersoids and grain boundaries. J. Alloys Compd. 703, 242–250 (2017).
Deschamps, A. & Hutchinson, C. R. Precipitation kinetics in metallic alloys: experiments and modeling. Acta Mater. 220, 117338 (2021).
Norman, A. F., Prangnell, P. B. & McEwen, R. S. The solidification behaviour of dilute aluminium–scandium alloys. Acta Mater. 46, 5715–5732 (1998).
Tan, L. & Allen, T. R. Effect of thermomechanical treatment on the corrosion of AA5083. Corros. Sci. 52, 548–554 (2010).
D’Antuono, D. S. et al. Grain boundary misorientation dependence of β phase precipitation in an Al-Mg alloy. Scripta Mater. 76, 81–84 (2014).
Liu, G. et al. Nanostructured high-strength molybdenum alloys with unprecedented tensile ductility. Nat. Mater. 12, 344–350 (2013).
Herbig, M. et al. Atomic-scale quantification of grain boundary segregation in nanocrystalline material. Phys. Rev. Lett. 112, 126103 (2014).
Marquis, E. A., Seidman, D. N., Asta, M. & Woodward, C. Composition evolution of nanoscale Al3Sc precipitates in an Al–Mg–Sc alloy: experiments and computations. Acta Mater. 54, 119–130 (2006).
Hutchinson, C. R., Fan, X., Pennycook, S. J. & Shiflet, G. J. On the origin of the high coarsening resistance of Ω plates in Al–Cu–Mg–Ag Alloys. Acta Mater. 49, 2827–2841 (2001).
Reich, L., Murayama, M. & Hono, K. Evolution of Ω phase in an Al–Cu–Mg–Ag alloy—a three-dimensional atom probe study. Acta Mater. 46, 6053–6062 (1998).
Xue, H. et al. Highly stable coherent nanoprecipitates via diffusion-dominated solute uptake and interstitial ordering. Nat. Mater. 22, 434–441 (2023).
Fu, L. et al. Mechanical properties of L12 type Al3X (X = Mg, Sc, Zr) from first-principles study. Phys. Stat. Sol. b 249, 1510–1516 (2012).
Foley, D. L., Leff, A. C., Lang, A. C. & Taheri, M. L. Evolution of β-phase precipitates in an aluminum-magnesium alloy at the nanoscale. Acta Mater. 185, 279–286 (2020).
Orthacker, A. et al. Diffusion-defining atomic-scale spinodal decomposition within nanoprecipitates. Nat. Mater. 17, 1101–1107 (2018).
Clouet, E. et al. Complex precipitation pathways in multicomponent alloys. Nat. Mater. 5, 482–488 (2006).
Røyset, J. & Ryum, N. Scandium in aluminium alloys. Inter. Mater. Rev. 50, 19–44 (2005).
Aboulfadl, H. et al. Dynamic strain aging studied at the atomic scale. Acta Mater. 86, 34–42 (2015).
da Silva, A. K. et al. Phase nucleation through confined spinodal fluctuations at crystal defects evidenced in Fe-Mn alloys. Nat. Commun. 9, 1137 (2018).
Legros, M., Dehm, G., Arzt, E. & Balk, T. J. Observation of giant diffusivity along dislocation cores. Science 319, 1646–1649 (2008).
Han, Y. et al. Influence of hydrogen content on the microstructure and mechanical properties of ER5183 wires. Adv. Mater. Sci. Eng. 2019, 362369 (2019).
Safyari, M., Moshtaghi, M., Kuramoto, S. & Hojo, T. Influence of microstructure-driven hydrogen distribution on environmental hydrogen embrittlement of an Al-Cu-Mg alloy. Inter. J. Hydro. Energy 46, 37502–37508 (2021).
Tadakazu, O. et al. Effects of hydrogen on tensile properties of Al-8%Mg alloy. J. Jpn Inst. Light Met. 27, 473–479 (1977).
Breen, A. J. et al. Solute hydrogen and deuterium observed at the near atomic scale in high-strength steel. Acta Mater. 188, 108–120 (2020).
Chang, Y. H. et al. Characterizing solute hydrogen and hydrides in pure and alloyed titanium at the atomic scale. Acta Mater. 150, 273–280 (2018).
Gault, B. et al. Towards establishing best practice in the analysis of hydrogen and deuterium by atom probe tomography. Microsc. Microanal. 30, 1205–1220 (2024).
Safyari, M., Moshtaghi, M., Hojo, T. & Akiyama, E. et al. Mechanisms of hydrogen embrittlement in high-strength aluminum alloys containing coherent or incoherent dispersoids. Corros. Sci. 194, 109895 (2022).
Safyari, M. et al. New insights into hydrogen trapping and embrittlement in high strength aluminum alloys. Corros. Sci. 223, 111453 (2023).
Takahashi, J., Kawakami, K. & Kobayashi, Y. Origin of hydrogen trapping site in vanadium carbide precipitation strengthening steel. Acta Mater. 153, 193–204 (2018).
Stemper, L. et al. On the potential of aluminum crossover alloys. Prog. Mater Sci. 124, 100873 (2022).
Kürnsteiner, P. et al. Control of thermally stable core-shell nano-precipitates in additively manufactured Al-Sc-Zr alloys. Addit. Manuf. 32, 100910 (2020).
Jia, Q. B. et al. Selective laser melting of a high strength Al–Mn–Sc alloy: alloy design and strengthening mechanisms. Acta Mater. 171, 108–118 (2019).
Safyari, M. et al. Manipulating nanostructure during wire arc additive manufacturing defeats hydrogen embrittlement. Corr. Sci. 233, 112088 (2024).
Yang, C. et al. The influence of Sc solute partitioning on the microalloying effect and mechanical properties of Al-Cu alloys with minor Sc addition. Acta Mater. 119, 68–79 (2016).
Malis, T., Cheng, S. C. & Egerton, R. F. EELS log-ratio technique for specimen-thickness measurement in the TEM. J. Electron Micros. Tech. 8, 193–200 (1988).
Miller, M. K. & Forbes, R. G. Atom–Probe Tomography: The Local Electrode Atom Probe (Springer, 2014).
Wu, S. H. et al. Freezing solute atoms in nanograined aluminum alloys via high-density vacancies. Nat. Commun. 13, 3495 (2022).
Choo, W. Y. & Lee, J. Y. Thermal analysis of trapped hydrogen in pure iron. Metall. Trans. A 13, 135–140 (1982).
Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B Condens. Matter 54, 11169–11186 (1996).
Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).
Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).
Methfessel, M. & Paxton, A. T. High-precision sampling for Brillouin-zone integration in metals. Phys. Rev. B 40, 3616–3621 (1989).
Pennington, W. T. DIAMOND–visual crystal structure information system. J. Appl. Crystallogr. 32, 1028–1029 (1999).
Mizutani, U. et al. Fermi surface-Brillouin-zone-induced pseudogap in γ-Mg17Al12 and a possible stabilization mechanism of β-Al3Mg2. J. Phys. Condens. Matter 22, 485501 (2010).
Wolny, J. & Duda, M. Ordering of hexagonal layers in phase β- and β′-Mg2Al3. Philos. Mag. 91, 1568–1580 (2011).
Vrtnik, S. et al. Stabilization mechanism of γ-Mg17Al12 and β-Mg2Al3 complex metallic alloys. J. Phys. Condens. Matter 25, 425703 (2013).
van de Walle, A. et al. Efficient stochastic generation of special quasirandom structures. Calphad 42, 13–18 (2013).
van de Walle, A., Asta, M. & Ceder, G. The alloy theoretic automated toolkit: a user guide. Calphad 26, 539–553 (2002).
Tsuru, T. et al. First-principles study of hydrogen segregation at the MgZn2 precipitate in Al-Mg-Zn alloys. Comput. Mater. Sci. 148, 301–306 (2018).
Yamaguchi, M. et al. Hydrogen trapping in Mg2Si and Al7FeCu2 intermetallic compounds in aluminum alloy: first-principles calculations. Mater. Trans. 61, 1907–1911 (2020).