Thursday, May 1, 2025
No menu items!
HomeNatureStructurally complex phase engineering enables hydrogen-tolerant Al alloys

Structurally complex phase engineering enables hydrogen-tolerant Al alloys

  • Bond, G. M., Robertson, I. M. & Birnbaum, H. K. The influence of hydrogen on deformation and fracture processes in high-strength aluminum alloys. Acta Metall. 35, 2289–2296 (1987).

    Article 
    CAS 

    Google Scholar
     

  • Scully, J. R., Young, G. A. & Smith, S. W. in Gaseous Hydrogen Embrittlement of Materials in Energy Technologies (eds Gangloff, R. P. & Somerday, B. P.) 707–768 (Woodhead Publishing, 2012).

  • Liu, X. M. et al. Transmission electron microscopic observations of embrittlement of an aluminum alloy by liquid metal. Mater. Sci. Eng. A 55, 851–857 (1999).

    CAS 

    Google Scholar
     

  • Zhao, H. et al. Hydrogen trapping and embrittlement in high-strength Al alloys. Nature 602, 437–441 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Y. et al. Switching nanoprecipitates to resist hydrogen embrittlement in high-strength aluminum alloys. Nat. Commun. 13, 6860 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, Y. T. et al. Suppressed hydrogen embrittlement of high-strength Al alloys by Mn-rich intermetallic compound particles. Acta Mater. 236, 118110 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Knipling, K. E., Dunand, D. C. & Seidman, D. N. Criteria for developing castable, creep-resistant aluminum-based alloys – a review. Z. Metall. 97, 246–265 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Liu, G. et al. Experiment and multiscale modeling of the coupled influence of constituents and precipitates on the ductile fracture of heat-treatable aluminum alloys. Acta Mater. 53, 3459–3468 (2005).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Urban, K. & Feuerbacher, M. Structurally complex alloy phases. J. Non Cryst. Solids 334, 143–150 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Dubois, J. M. & Belin-Ferré, E. (eds) Complex Metallic Alloys: Fundamentals and Applications (Wiley, 2010).

  • Samson, S. The crystal structure of the phase β-Mg2Al3. Acta Crystal. 19, 401–413 (1965).

    Article 
    CAS 

    Google Scholar
     

  • Feuerbacher, M. et al. The Samson phase, β-Mg2Al3, revisited. Z. Kristal. 222, 259–288 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Blatov, V. A., Llyushin, G. D. & Proserplo, D. M. Nanocluster model of intermetallic compounds with giant unit cells: β, β′-Mg2Al3 polymorphs. Inorg. Chem. 49, 1811–1818 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, Y.-S. et al. Observation of hydrogen trapping at dislocations, grain boundaries, and precipitates. Science 367, 171–175 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yan, J. & Hodge, A. M. Study of β precipitation and layer structure formation in Al 5083: the role of dispersoids and grain boundaries. J. Alloys Compd. 703, 242–250 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Deschamps, A. & Hutchinson, C. R. Precipitation kinetics in metallic alloys: experiments and modeling. Acta Mater. 220, 117338 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Norman, A. F., Prangnell, P. B. & McEwen, R. S. The solidification behaviour of dilute aluminium–scandium alloys. Acta Mater. 46, 5715–5732 (1998).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Tan, L. & Allen, T. R. Effect of thermomechanical treatment on the corrosion of AA5083. Corros. Sci. 52, 548–554 (2010).

    Article 
    CAS 

    Google Scholar
     

  • D’Antuono, D. S. et al. Grain boundary misorientation dependence of β phase precipitation in an Al-Mg alloy. Scripta Mater. 76, 81–84 (2014).

    Article 

    Google Scholar
     

  • Liu, G. et al. Nanostructured high-strength molybdenum alloys with unprecedented tensile ductility. Nat. Mater. 12, 344–350 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Herbig, M. et al. Atomic-scale quantification of grain boundary segregation in nanocrystalline material. Phys. Rev. Lett. 112, 126103 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Marquis, E. A., Seidman, D. N., Asta, M. & Woodward, C. Composition evolution of nanoscale Al3Sc precipitates in an Al–Mg–Sc alloy: experiments and computations. Acta Mater. 54, 119–130 (2006).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hutchinson, C. R., Fan, X., Pennycook, S. J. & Shiflet, G. J. On the origin of the high coarsening resistance of Ω plates in Al–Cu–Mg–Ag Alloys. Acta Mater. 49, 2827–2841 (2001).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Reich, L., Murayama, M. & Hono, K. Evolution of Ω phase in an Al–Cu–Mg–Ag alloy—a three-dimensional atom probe study. Acta Mater. 46, 6053–6062 (1998).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Xue, H. et al. Highly stable coherent nanoprecipitates via diffusion-dominated solute uptake and interstitial ordering. Nat. Mater. 22, 434–441 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Fu, L. et al. Mechanical properties of L12 type Al3X (X = Mg, Sc, Zr) from first-principles study. Phys. Stat. Sol. b 249, 1510–1516 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Foley, D. L., Leff, A. C., Lang, A. C. & Taheri, M. L. Evolution of β-phase precipitates in an aluminum-magnesium alloy at the nanoscale. Acta Mater. 185, 279–286 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Orthacker, A. et al. Diffusion-defining atomic-scale spinodal decomposition within nanoprecipitates. Nat. Mater. 17, 1101–1107 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Clouet, E. et al. Complex precipitation pathways in multicomponent alloys. Nat. Mater. 5, 482–488 (2006).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Røyset, J. & Ryum, N. Scandium in aluminium alloys. Inter. Mater. Rev. 50, 19–44 (2005).

    Article 

    Google Scholar
     

  • Aboulfadl, H. et al. Dynamic strain aging studied at the atomic scale. Acta Mater. 86, 34–42 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • da Silva, A. K. et al. Phase nucleation through confined spinodal fluctuations at crystal defects evidenced in Fe-Mn alloys. Nat. Commun. 9, 1137 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Legros, M., Dehm, G., Arzt, E. & Balk, T. J. Observation of giant diffusivity along dislocation cores. Science 319, 1646–1649 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Han, Y. et al. Influence of hydrogen content on the microstructure and mechanical properties of ER5183 wires. Adv. Mater. Sci. Eng. 2019, 362369 (2019).

    Article 

    Google Scholar
     

  • Safyari, M., Moshtaghi, M., Kuramoto, S. & Hojo, T. Influence of microstructure-driven hydrogen distribution on environmental hydrogen embrittlement of an Al-Cu-Mg alloy. Inter. J. Hydro. Energy 46, 37502–37508 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Tadakazu, O. et al. Effects of hydrogen on tensile properties of Al-8%Mg alloy. J. Jpn Inst. Light Met. 27, 473–479 (1977).

    Article 

    Google Scholar
     

  • Breen, A. J. et al. Solute hydrogen and deuterium observed at the near atomic scale in high-strength steel. Acta Mater. 188, 108–120 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chang, Y. H. et al. Characterizing solute hydrogen and hydrides in pure and alloyed titanium at the atomic scale. Acta Mater. 150, 273–280 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Gault, B. et al. Towards establishing best practice in the analysis of hydrogen and deuterium by atom probe tomography. Microsc. Microanal. 30, 1205–1220 (2024).

  • Safyari, M., Moshtaghi, M., Hojo, T. & Akiyama, E. et al. Mechanisms of hydrogen embrittlement in high-strength aluminum alloys containing coherent or incoherent dispersoids. Corros. Sci. 194, 109895 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Safyari, M. et al. New insights into hydrogen trapping and embrittlement in high strength aluminum alloys. Corros. Sci. 223, 111453 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Takahashi, J., Kawakami, K. & Kobayashi, Y. Origin of hydrogen trapping site in vanadium carbide precipitation strengthening steel. Acta Mater. 153, 193–204 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Stemper, L. et al. On the potential of aluminum crossover alloys. Prog. Mater Sci. 124, 100873 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Kürnsteiner, P. et al. Control of thermally stable core-shell nano-precipitates in additively manufactured Al-Sc-Zr alloys. Addit. Manuf. 32, 100910 (2020).


    Google Scholar
     

  • Jia, Q. B. et al. Selective laser melting of a high strength Al–Mn–Sc alloy: alloy design and strengthening mechanisms. Acta Mater. 171, 108–118 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Safyari, M. et al. Manipulating nanostructure during wire arc additive manufacturing defeats hydrogen embrittlement. Corr. Sci. 233, 112088 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Yang, C. et al. The influence of Sc solute partitioning on the microalloying effect and mechanical properties of Al-Cu alloys with minor Sc addition. Acta Mater. 119, 68–79 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Malis, T., Cheng, S. C. & Egerton, R. F. EELS log-ratio technique for specimen-thickness measurement in the TEM. J. Electron Micros. Tech. 8, 193–200 (1988).

    Article 
    CAS 

    Google Scholar
     

  • Miller, M. K. & Forbes, R. G. Atom–Probe Tomography: The Local Electrode Atom Probe (Springer, 2014).

  • Wu, S. H. et al. Freezing solute atoms in nanograined aluminum alloys via high-density vacancies. Nat. Commun. 13, 3495 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Choo, W. Y. & Lee, J. Y. Thermal analysis of trapped hydrogen in pure iron. Metall. Trans. A 13, 135–140 (1982).

    Article 

    Google Scholar
     

  • Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B Condens. Matter 54, 11169–11186 (1996).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Methfessel, M. & Paxton, A. T. High-precision sampling for Brillouin-zone integration in metals. Phys. Rev. B 40, 3616–3621 (1989).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Pennington, W. T. DIAMOND–visual crystal structure information system. J. Appl. Crystallogr. 32, 1028–1029 (1999).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Mizutani, U. et al. Fermi surface-Brillouin-zone-induced pseudogap in γ-Mg17Al12 and a possible stabilization mechanism of β-Al3Mg2. J. Phys. Condens. Matter 22, 485501 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wolny, J. & Duda, M. Ordering of hexagonal layers in phase β- and β′-Mg2Al3. Philos. Mag. 91, 1568–1580 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Vrtnik, S. et al. Stabilization mechanism of γ-Mg17Al12 and β-Mg2Al3 complex metallic alloys. J. Phys. Condens. Matter 25, 425703 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • van de Walle, A. et al. Efficient stochastic generation of special quasirandom structures. Calphad 42, 13–18 (2013).

    Article 

    Google Scholar
     

  • van de Walle, A., Asta, M. & Ceder, G. The alloy theoretic automated toolkit: a user guide. Calphad 26, 539–553 (2002).

    Article 

    Google Scholar
     

  • Tsuru, T. et al. First-principles study of hydrogen segregation at the MgZn2 precipitate in Al-Mg-Zn alloys. Comput. Mater. Sci. 148, 301–306 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Yamaguchi, M. et al. Hydrogen trapping in Mg2Si and Al7FeCu2 intermetallic compounds in aluminum alloy: first-principles calculations. Mater. Trans. 61, 1907–1911 (2020).

    Article 
    CAS 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments