Saturday, January 4, 2025
No menu items!
HomeNatureStructural insights into the high-affinity IgE receptor FcεRI complex

Structural insights into the high-affinity IgE receptor FcεRI complex

  • Galli, S. J. & Tsai, M. IgE and mast cells in allergic disease. Nat. Med. 18, 693–704 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McDonnell, J. M., Dhaliwal, B., Sutton, B. J. & Gould, H. J. IgE, IgE receptors and anti-IgE biologics: protein structures and mechanisms of action. Annu. Rev. Immunol. 41, 255–275 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kinet, J. P. The high-affinity IgE receptor (Fc epsilon RI): from physiology to pathology. Annu. Rev. Immunol. 17, 931–972 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Martin, A. M., Kulski, J. K., Witt, C., Pontarotti, P. & Christiansen, F. T. Leukocyte Ig-like receptor complex (LRC) in mice and men. Trends Immunol. 23, 81–88 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Humphrey, M. B., Lanier, L. L. & Nakamura, M. C. Role of ITAM-containing adapter proteins and their receptors in the immune system and bone. Immunol. Rev. 208, 50–65 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nimmerjahn, F. & Ravetch, J. V. Fcgamma receptors as regulators of immune responses. Nat. Rev. Immunol. 8, 34–47 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hogarth, P. M. & Pietersz, G. A. Fc receptor-targeted therapies for the treatment of inflammation, cancer and beyond. Nat. Rev. Drug Discov. 11, 311–331 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brandsma, A. M., Hogarth, P. M., Nimmerjahn, F. & Leusen, J. H. Clarifying the confusion between cytokine and Fc receptor “common gamma chain”. Immunity 45, 225–226 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bruhns, P. & Jonsson, F. Mouse and human FcR effector functions. Immunol. Rev. 268, 25–51 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Blank, U. et al. Complete structure and expression in transfected cells of high affinity IgE receptor. Nature 337, 187–189 (1989).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Miller, L., Blank, U., Metzger, H. & Kinet, J. P. Expression of high-affinity binding of human immunoglobulin E by transfected cells. Science 244, 334–337 (1989).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Alber, G., Miller, L., Jelsema, C. L., Varin-Blank, N. & Metzger, H. Structure-function relationships in the mast cell high affinity receptor for IgE. Role of the cytoplasmic domains and of the beta subunit. J. Biol. Chem. 266, 22613–22620 (1991).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin, S., Cicala, C., Scharenberg, A. M. & Kinet, J. P. The FcεRIβ subunit functions as an amplifier of FcεRIγ-mediated cell activation signals. Cell 85, 985–995 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Turner, H. & Kinet, J. P. Signalling through the high-affinity IgE receptor FcεRI. Nature 402, B24–B30 (1999).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kraft, S. & Kinet, J. P. New developments in FcεRI regulation, function and inhibition. Nat. Rev. Immunol. 7, 365–378 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Underhill, D. M. & Goodridge, H. S. The many faces of ITAMs. Trends Immunol. 28, 66–73 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mócsai, A., Ruland, J. & Tybulewicz, V. L. The SYK tyrosine kinase: a crucial player in diverse biological functions. Nat. Rev. Immunol. 10, 387–402 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Orloff, D. G., Ra, C. S., Frank, S. J., Klausner, R. D. & Kinet, J. P. Family of disulphide-linked dimers containing the ζ and η chains of the T-cell receptor and the gamma chain of Fc receptors. Nature 347, 189–191 (1990).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Garman, S. C., Wurzburg, B. A., Tarchevskaya, S. S., Kinet, J. P. & Jardetzky, T. S. Structure of the Fc fragment of human IgE bound to its high-affinity receptor FcεRIα. Nature 406, 259–266 (2000).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Holdom, M. D. et al. Conformational changes in IgE contribute to its uniquely slow dissociation rate from receptor FcɛRI. Nat. Struct. Mol. Biol. 18, 571–576 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Drinkwater, N. et al. Human immunoglobulin E flexes between acutely bent and extended conformations. Nat. Struct. Mol. Biol. 21, 397–404 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Blank, U., Ra, C. S. & Kinet, J. P. Characterization of truncated alpha chain products from human, rat, and mouse high affinity receptor for immunoglobulin E. J. Biol. Chem. 266, 2639–2646 (1991).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Passante, E. & Frankish, N. The RBL-2H3 cell line: its provenance and suitability as a model for the mast cell. Inflamm. Res. 58, 737–745 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mattiola, I., Mantovani, A. & Locati, M. The tetraspan MS4A family in homeostasis, immunity, and disease. Trends Immunol. 42, 764–781 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rougé, L. et al. Structure of CD20 in complex with the therapeutic monoclonal antibody rituximab. Science 367, 1224–1230 (2020).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Kumar, A., Planchais, C., Fronzes, R., Mouquet, H. & Reyes, N. Binding mechanisms of therapeutic antibodies to human CD20. Science 369, 793–799 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Singleton, T. E., Platzer, B., Dehlink, E. & Fiebiger, E. The first transmembrane region of the beta-chain stabilizes the tetrameric Fc epsilon RI complex. Mol. Immunol. 46, 2333–2339 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rashid, A. et al. Assessing the role of Asp 194 in the transmembrane domains of the alpha-chain of the high-affinity receptor complex for immunoglobulin E in signal transduction. Mol. Immunol. 48, 128–136 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Blazquez-Moreno, A. et al. Transmembrane features governing Fc receptor CD16A assembly with CD16A signaling adaptor molecules. Proc. Natl Acad. Sci. USA 114, E5645–E5654 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kuster, H., Thompson, H. & Kinet, J. P. Characterization and expression of the gene for the human Fc receptor gamma subunit. Definition of a new gene family. J. Biol. Chem. 265, 6448–6452 (1990).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wines, B. D., Trist, H. M., Ramsland, P. A. & Hogarth, P. M. A common site of the Fc receptor gamma subunit interacts with the unrelated immunoreceptors FcαRI and FcεRI. J. Biol. Chem. 281, 17108–17113 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Travers, T. et al. Combinatorial diversity of Syk recruitment driven by its multivalent engagement with FcεRIγ. Mol. Biol. Cell 30, 2331–2347 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bax, H. J., Bowen, H., Dodev, T. S., Sutton, B. J. & Gould, H. J. Mechanism of the antigen-independent cytokinergic SPE-7 IgE activation of human mast cells in vitro. Sci. Rep. 5, 9538 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hibbs, M. L. et al. Mechanisms for regulating expression of membrane isoforms of Fc gamma RIII (CD16). Science 246, 1608–1611 (1989).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kurosaki, T., Gander, I. & Ravetch, J. V. A subunit common to an IgG Fc receptor and the T-cell receptor mediates assembly through different interactions. Proc. Natl Acad. Sci. USA 88, 3837–3841 (1991).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wines, B. D., Trist, H. M., Monteiro, R. C., Van Kooten, C. & Hogarth, P. M. Fc receptor γ chain residues at the interface of the cytoplasmic and transmembrane domains affect association with FcαRI, surface expression, and function. J. Biol. Chem. 279, 26339–26345 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pfefferkorn, L. C. & Yeaman, G. R. Association of IgA-Fc receptors (Fc alpha R) with Fc epsilon RI gamma 2 subunits in U937 cells. Aggregation induces the tyrosine phosphorylation of gamma 2. J. Immunol. 153, 3228–3236 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Morton, H. C. et al. Functional association between the human myeloid immunoglobulin A Fc receptor (CD89) and FcR gamma chain. Molecular basis for CD89/FcR gamma chain association. J. Biol. Chem. 270, 29781–29787 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fewtrell, C., Mohr, F. C., Ryan, T. A. & Millard, P. J. in Novartis Foundation Symposia Ciba Foundation Symposium 147 ‐ IgE, Mast Cells and the Allergic Response (eds Chadwick, D. J. et al.) 114–132 (Wiley, 1989).

  • Metzger, H. et al. The receptor with high affinity for immunoglobulin E. Annu. Rev. Immunol. 4, 419–470 (1986).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dong, D. et al. Structural basis of assembly of the human T cell receptor-CD3 complex. Nature 573, 546–552 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, Y. et al. Cholesterol inhibits TCR signaling by directly restricting TCR-CD3 core tunnel motility. Mol. Cell 82, 1278–1287 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • SuÅ¡ac, L. et al. Structure of a fully assembled tumor-specific T cell receptor ligated by pMHC. Cell 185, 3201–3213 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saotome, K. et al. Structural analysis of cancer-relevant TCR-CD3 and peptide-MHC complexes by cryoEM. Nat. Commun. 14, 2401 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xin, W. et al. Structures of human γδ T cell receptor–CD3 complex. Nature https://doi.org/10.1038/s41586-024-07439-4 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sheets, E. D., Holowka, D. & Baird, B. Critical role for cholesterol in Lyn-mediated tyrosine phosphorylation of FcεRI and their association with detergent-resistant membranes. J. Cell Biol. 145, 877–887 (1999).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Curnow, S. J., Boyer, C., Buferne, M. & Schmitt-Verhulst, A. M. TCR-associated ζ-FcεRIγ heterodimers on CD4−CD8− NK1.1+ T cells selected by specific class I MHC antigen. Immunity 3, 427–438 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Enyedy, E. J. et al. Fc epsilon receptor type I gamma chain replaces the deficient T cell receptor zeta chain in T cells of patients with systemic lupus erythematosus. Arthritis Rheum. 44, 1114–1121 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Krishnan, S., Warke, V. G., Nambiar, M. P., Tsokos, G. C. & Farber, D. L. The FcR gamma subunit and Syk kinase replace the CD3 zeta-chain and ZAP-70 kinase in the TCR signaling complex of human effector CD4 T cells. J. Immunol. 170, 4189–4195 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lanier, L. L. Up on the tightrope: natural killer cell activation and inhibition. Nat. Immunol. 9, 495–502 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

  • Wang, N. et al. Structural basis of human monocarboxylate transporter 1 inhibition by anti-cancer drug candidates. Cell 184, 370–383 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pettersen, E. F. et al. UCSF Chimera-a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. eLife 7, e42166 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bawazir, M., Amponnawarat, A., Hui, Y., Oskeritzian, C. A. & Ali, H. Inhibition of MRGPRX2 but not FcεRI or MrgprB2-mediated mast cell degranulation by a small molecule inverse receptor agonist. Front. Immunol. 13, 1033794 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments