Monday, October 6, 2025
No menu items!
HomeNatureSpin squeezing in an ensemble of nitrogen–vacancy centres in diamond

Spin squeezing in an ensemble of nitrogen–vacancy centres in diamond

  • Wineland, D. J., Bollinger, J. J., Itano, W. M., Moore, F. L. & Heinzen, D. J. Spin squeezing and reduced quantum noise in spectroscopy. Phys. Rev. A 46, R6797–R6800 (1992).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kitagawa, M. & Ueda, M. Squeezed spin states. Phys. Rev. A 47, 5138–5143 (1993).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Meyer, V. et al. Experimental demonstration of entanglement-enhanced rotation angle estimation using trapped ions. Phys. Rev. Lett. 86, 5870–5873 (2001).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Louchet-Chauvet, A. et al. Entanglement-assisted atomic clock beyond the projection noise limit. New J. Phys. 12, 065032 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Gross, C., Zibold, T., Nicklas, E., Esteve, J. & Oberthaler, M. K. Nonlinear atom interferometer surpasses classical precision limit. Nature 464, 1165–1169 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sewell, R. J. et al. Magnetic sensitivity beyond the projection noise limit by spin squeezing. Phys. Rev. Lett. 109, 253605 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hosten, O., Engelsen, N. J., Krishnakumar, R. & Kasevich, M. A. Measurement noise 100 times lower than the quantum-projection limit using entangled atoms. Nature 529, 505–508 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Fernholz, T. et al. Spin squeezing of atomic ensembles via nuclear-electronic spin entanglement. Phys. Rev. Lett. 101, 073601 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Leroux, I. D., Schleier-Smith, M. H. & Vuletić, V. Implementation of cavity squeezing of a collective atomic spin. Phys. Rev. Lett. 104, 073602 (2010).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Hamley, C. D., Gerving, C. S., Hoang, T. M., Bookjans, E. M. & Chapman, M. S. Spin-nematic squeezed vacuum in a quantum gas. Nat. Phys. 8, 305–308 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Riedel, M. F. et al. Atom-chip-based generation of entanglement for quantum metrology. Nature 464, 1170–1173 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bohnet, J. G. et al. Quantum spin dynamics and entanglement generation with hundreds of trapped ions. Science 352, 1297–1301 (2016).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Bornet, G. et al. Scalable spin squeezing in a dipolar Rydberg atom array. Nature 621, 728–733 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Franke, J. et al. Quantum-enhanced sensing on optical transitions through finite-range interactions. Nature 621, 740–745 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Eckner, W. J. et al. Realizing spin squeezing with Rydberg interactions in an optical clock. Nature 621, 734–739 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hines, J. A. et al. Spin squeezing by Rydberg dressing in an array of atomic ensembles. Phys. Rev. Lett. 131, 063401 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gross, C. & Bloch, I. Quantum simulations with ultracold atoms in optical lattices. Science 357, 995–1001 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Browaeys, A. & Lahaye, T. Many-body physics with individually controlled Rydberg atoms. Nat. Phys. 16, 132–142 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Kjaergaard, M. et al. Superconducting qubits: current state of play. Annu. Rev. Condens. Matter Phys. 11, 369–395 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Monroe, C. et al. Programmable quantum simulations of spin systems with trapped ions. Rev. Mod. Phys. 93, 025001 (2021).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Auccaise, R. et al. Spin squeezing in a quadrupolar nuclei NMR system. Phys. Rev. Lett. 114, 043604 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wolfowicz, G. et al. Quantum guidelines for solid-state spin defects. Nat. Rev. Mater. 6, 906–925 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Randall, J. et al. Many-body–localized discrete time crystal with a programmable spin-based quantum simulator. Science 374, 1474–1478 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Burkard, G., Ladd, T. D., Pan, A., Nichol, J. M. & Petta, J. R. Semiconductor spin qubits. Rev. Mod. Phys. 95, 025003 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kirstein, E. et al. The squeezed dark nuclear spin state in lead halide perovskites. Nat. Commun. 14, 6683 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maze, J. R. et al. Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature 455, 644–647 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kolkowitz, S. et al. Probing Johnson noise and ballistic transport in normal metals with a single-spin qubit. Science 347, 1129–1132 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Casola, F., van der Sar, T. & Yacoby, A. Probing condensed matter physics with magnetometry based on nitrogen-vacancy centres in diamond. Nat. Rev. Mater. 3, 17088 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Aslam, N. et al. Quantum sensors for biomedical applications. Nat. Rev. Phys. 5, 157–169 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Furusawa, A. et al. Unconditional quantum teleportation. Science 282, 706–709 (1998).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Braunstein, S. L. & van Loock, P. Quantum information with continuous variables. Rev. Mod. Phys. 77, 513–577 (2005).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Pezzè, L., Smerzi, A., Oberthaler, M. K., Schmied, R. & Treutlein, P. Quantum metrology with nonclassical states of atomic ensembles. Rev. Mod. Phys. 90, 035005 (2018).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Malia, B. K., Wu, Y., Martínez-Rincón, J. & Kasevich, M. A. Distributed quantum sensing with mode-entangled spin-squeezed atomic states. Nature 612, 661–665 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hughes, L. B. et al. Strongly interacting, two-dimensional, dipolar spin ensemble in (111)-oriented diamond. Phys. Rev. X 15, 021035 (2024).


    Google Scholar
     

  • Cappellaro, P. & Lukin, M. D. Quantum correlation in disordered spin systems: applications to magnetic sensing. Phys. Rev. A 80, 032311 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Bennett, S. D. et al. Phonon-induced spin-spin interactions in diamond nanostructures: application to spin squeezing. Phys. Rev. Lett. 110, 156402 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Perlin, M. A., Qu, C. & Rey, A. M. Spin squeezing with short-range spin-exchange interactions. Phys. Rev. Lett. 125, 223401 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Comparin, T., Mezzacapo, F., Robert-de-Saint-Vincent, M. & Roscilde, T. Scalable spin squeezing from spontaneous breaking of a continuous symmetry. Phys. Rev. Lett. 129, 113201 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng, T.-X. et al. Preparation of metrological states in dipolar-interacting spin systems. npj Quantum Inf. 8, 150 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Block, M. et al. Scalable spin squeezing from finite-temperature easy-plane magnetism. Nat. Phys. 20, 1575–1581 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Barry, J. F. et al. Sensitivity optimization for NV-diamond magnetometry. Rev. Mod. Phys. 92, 015004 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Arunkumar, N. et al. Quantum logic enhanced sensing in solid-state spin ensembles. Phys. Rev. Lett. 131, 100801 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Doherty, M. W. et al. The nitrogen-vacancy colour centre in diamond. Phys. Rep. 528, 1–45 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Edwards, S. F. & Anderson, P. W. Theory of spin glasses. J. Phys. F Metal Phys. 5, 965 (1975).

    Article 
    ADS 

    Google Scholar
     

  • Burin, A. L. Many-body delocalization in a strongly disordered system with long-range interactions: finite-size scaling. Phys. Rev. B 91, 094202 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Martin, L. S. et al. Controlling local thermalization dynamics in a Floquet-engineered dipolar ensemble. Phys. Rev. Lett. 130, 210403 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Borish, V., Marković, O., Hines, J. A., Rajagopal, S. V. & Schleier-Smith, M. Transverse-field Ising dynamics in a Rydberg-dressed atomic gas. Phys. Rev. Lett. 124, 063601 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Cooper, E. S., Kunkel, P., Periwal, A. & Schleier-Smith, M. Graph states of atomic ensembles engineered by photon-mediated entanglement. Nat. Phys. 20, 770–775 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Robinson, J. M. et al. Direct comparison of two spin-squeezed optical clock ensembles at the 10−17 level. Nat. Phys. 20, 208–213 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Degen, C. L., Reinhard, F. & Cappellaro, P. Quantum sensing. Rev. Mod. Phys. 89, 035002 (2017).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Hopper, D. A., Shulevitz, H. J. & Bassett, L. C. Spin readout techniques of the nitrogen-vacancy center in diamond. Micromachines 9, 437 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schachenmayer, J., Pikovski, A. & Rey, A. M. Many-body quantum spin dynamics with Monte Carlo trajectories on a discrete phase space. Phys. Rev. X 5, 011022 (2015).


    Google Scholar
     

  • Braemer, A., Vahedi, J. & Gärttner, M. Cluster truncated Wigner approximation for bond-disordered Heisenberg spin models. Phys. Rev. B 110, 054204 (2024).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chomaz, L. et al. Dipolar physics: a review of experiments with magnetic quantum gases. Rep. Prog. Phys. 86, 026401 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Cornish, S. L., Tarbutt, M. R. & Hazzard, K. R. A. Quantum computation and quantum simulation with ultracold molecules. Nat. Phys. 20, 730–740 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Davis, E. J. et al. Probing many-body dynamics in a two-dimensional dipolar spin ensemble. Nat. Phys. 19, 836–844 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, Y.-C. et al. Laser writing of individual nitrogen-vacancy defects in diamond with near-unity yield. Optica 6, 662–667 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Groot-Berning, K., Jacob, G., Osterkamp, C., Jelezko, F. & Schmidt-Kaler, F. Fabrication of 15NV centers in diamond using a deterministic single ion implanter. New J. Phys. 23, 063067 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Carroll, A. N. et al. Observation of generalized tJ spin dynamics with tunable dipolar interactions. Science 388, 381–386 (2025).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Signoles, A. et al. Glassy dynamics in a disordered Heisenberg quantum spin system. Phys. Rev. X 11, 011011 (2021).

    CAS 

    Google Scholar
     

  • Hughes, L. B. et al. Two-dimensional spin systems in PECVD-grown diamond with tunable density and long coherence for enhanced quantum sensing and simulation. APL Mater. 11, 021101 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wu, W. Replication data for: Spin squeezing in an ensemble of nitrogen-vacancy centres in diamond. Harvard Dataverse https://doi.org/10.7910/DVN/LVPLRI (2025).

  • RELATED ARTICLES

    Most Popular

    Recent Comments