Costello, M. J. et al. Marine biogeographic realms and species endemicity. Nat. Commun. 8, 1057 (2017).
Victorero, L. et al. Global benthic biogeographical regions and macroecological drivers for ophiuroids. Ecography 2023, e06627 (2023).
Woolley, S. N. C. et al. Deep-sea diversity patterns are shaped by energy availability. Nature 533, 393–396 (2016).
Rabosky, D. L. et al. An inverse latitudinal gradient in speciation rate for marine fishes. Nature 559, 392–395 (2018).
O’Hara, T. D., Hugall, A. F., Woolley, S. N. C., Bribiesca-Contreras, G. & Bax, N. J. Contrasting processes drive ophiuroid phylodiversity across shallow and deep seafloors. Nature 565, 636–639 (2019).
Vermeij, G. J. When biotas meet: understanding biotic interchange. Science 253, 1099–1104 (1991).
McClain, C. R. & Hardy, S. M. The dynamics of biogeographic ranges in the deep-sea. Proc. Roy. Soc. B 277, 3533–3546 (2010).
Taylor, M. L. & Roterman, C. N. Invertebrate population genetics across Earth’s largest habitat: the deep-sea floor. Mol. Ecol. 26, 4872–4896 (2017).
O’Hara, T. & Hugall, A. Global seafloor connectivity over evolutionary time. Dryad https://doi.org/10.5061/dryad.xsj3tx9rh (2025).
Stöhr, S., O’Hara, T. D. & Thuy, B. Global diversity of brittle stars (Echinodermata: Ophiuroidea). PLoS ONE 7, e31940 (2012).
O’Hara, T. D., Hugall, A. F., Thuy, B. & Moussalli, A. Phylogenomic resolution of the Class Ophiuroidea unlocks a global microfossil record. Curr. Biol. 24, 1874–1879 (2014).
O’Hara, T. D., Thuy, B. & Hugall, A. F. Relict from the Jurassic: new family of brittle-stars from a New Caledonian seamount. Proc. Roy. Soc. B 288, 20210684 (2021).
O’Hara, T. D., Hugall, A. F., Thuy, B., Stöhr, S. & Martynov, A. V. Restructuring higher taxonomy using broad-scale phylogenomics: the living Ophiuroidea. Mol. Phylogenet. Evol. 107, 415–430 (2017).
Friedman, S. T. & Muñoz, M. M. A latitudinal gradient of deep-sea invasions for marine fishes. Nat. Commun. 14, 773 (2023).
Mironov, A. N., Dilman, A. & Kylova, E. M. Global distribution patterns of genera occurring in the Arctic Ocean deeper 2000 m. Invertebr. Zool. 10, 167–194 (2013).
Thuy, B. et al. Ancient origin of the modern deep-sea fauna. PLoS ONE 7, e46913 (2012).
Crame, J. A. & McGowan, A. J. Origin of the tropical–polar biodiversity contrast. Glob. Ecol. Biogeogr. 31, 1207–1227 (2022).
Bluhm, B. A. et al. Diversity of the Arctic deep-sea benthos. Mar. Biodivers. 41, 87–107 (2011).
Bribiesca-Contreras, G., Verbruggen, H., Hugall, A. F. & O’Hara, T. D. The importance of offshore origination revealed through ophiuroid phylogenomics. Proc. Roy. Soc. B 284, 20170160 (2017).
Brown, A. & Thatje, S. Explaining bathymetric diversity patterns in marine benthic invertebrates and demersal fishes: physiological contributions to adaptation of life at depth. Biol. Rev. Camb. Philos. Soc. 89, 406–426 (2014).
Bribiesca-Contreras, G., Verbruggen, H., Hugall, A. F. & O’Hara, T. D. Spatio-temporal patterns of tropical shallow-water brittle stars. J. Biogeogr. 46, 1287–1299 (2019).
Vermeij, G. J. Anatomy of an invasion: the trans-Arctic interchange. Paleobiology 17, 281–307 (1991).
Tierney, J. E. et al. Glacial cooling and climate sensitivity revisited. Nature 584, 569–573 (2020).
Karstensen, J., Stramma, L. & Visbeck, M. Oxygen minimum zones in the eastern tropical Atlantic and Pacific oceans. Prog. Oceanogr. 77, 331–350 (2008).
Khon, V. C., Hoogakker, B. A. A., Schneider, B., Segschneider, J. & Park, W. Effect of an open Central American Seaway on ocean circulation and the oxygen minimum zone in the tropical Pacific from model simulations. Geophys. Res. Lett. 50, e2023GL103728 (2023).
O’Hara, T. D., England, P. R., Gunasekera, R. & Naughton, K. M. Limited phylogeographic structure for five bathyal ophiuroids at continental scales. Deep Sea Res. I 84, 18–28 (2014).
O’Hara, T. D. & Thuy, B. Biogeography and taxonomy of Ophiuroidea (Echinodermata) from the Îles Saint-Paul and Amsterdam in the southern Indian Ocean. Zootaxa 5124, 1–49 (2022).
Branch, T. A. A review of orange roughy Hoplostethus atlanticus fisheries, estimation methods, biology and stock structure. S. Afr. J. Mar. Sci. 23, 181–203 (2001).
Tong, R. et al. Environmental drivers and the distribution of cold-water corals in the global ocean. Front. Mar. Sci. https://doi.org/10.3389/fmars.2023.1217851 (2023).
Henry, L.-A. et al. Global ocean conveyor lowers extinction risk in the deep sea. Deep Sea Res. I 88, 8–16 (2014).
Gubili, C. et al. Species diversity in the cryptic abyssal holothurian Psychropotes longicauda (Echinodermata). Deep Sea Res. II 137, 288–296 (2017).
Meißner, K., Schwentner, M., Götting, M., Knebelsberger, T. & Fiege, D. Polychaetes distributed across oceans—examples of widely recorded species from abyssal depths of the Atlantic and Pacific Oceans. Zool. J. Linn. Soc. 199, 906–944 (2023).
Kaiser, S. et al. Diversity, distribution and composition of abyssal benthic Isopoda in a region proposed for deep-seafloor mining of polymetallic nodules: a synthesis. Mar. Biodivers. 53, 30 (2023).
Meckler, A. N. et al. Cenozoic evolution of deep ocean temperature from clumped isotope thermometry. Science 377, 86–90 (2022).
Auderset, A. et al. Enhanced ocean oxygenation during Cenozoic warm periods. Nature 609, 77–82 (2022).
Christodoulou, M., O’Hara, T. D., Hugall, A. F. & Arbizu, P. M. Dark ophiuroid biodiversity in a prospective abyssal mine field. Curr. Biol. 29, 3909–3912 (2019).
Christodoulou, M. et al. Unexpected high abyssal ophiuroid diversity in polymetallic nodule fields of the northeast Pacific Ocean and implications for conservation. Biogeosciences 17, 1845–1876 (2020).
Young, C. M., Sewell, M. A., Tyler, P. A. & Metaxas, A. Biogeographic and bathymetric ranges of Atlantic deep-sea echinoderms and ascidians: the role of larval dispersal. Biodivers. Conserv. 6, 1507–1522 (1997).
Ricklefs, R. E. A comprehensive framework for global patterns in biodiversity. Ecol. Lett. 7, 1–15 (2004).
Ree, R. H., Webb, C. O. & Donoghue, M. J. A likelihood framework for inferring the evolution of geographic range on phylogenetic trees. Evolution 59, 2299–2311 (2005).
Goldberg, E. E., Lancaster, L. T. & Ree, R. H. Phylogenetic inference of reciprocal effects between geographic range evolution and diversification. Syst. Biol. 60, 451–465 (2011).
Landis, M. J., Matzke, N. J., Moore, B. R. & Huelsenbeck, J. P. Bayesian analysis of biogeography when the number of areas is large. Syst. Biol. 62, 789–804 (2013).
Lewis, P. O. A likelihood approach to estimating phylogeny from discrete morphological character data. Syst. Biol. 50, 913–925 (2001).
Vermeij, G. J. et al. The temperate marine Peruvian Province: how history accounts for its unusual biota. Ecol. Evol. 14, e70048 (2024).
Hollyman, P. R. et al. Bioregionalization of the South Sandwich Islands through community analysis of bathyal fish and invertebrate assemblages using fishery-derived data. Deep Sea Res. II 198, 105054 (2022).
Hugall, A. F., O’Hara, T. D., Hunjan, S., Nilsen, R. & Moussalli, A. An exon-capture system for the entire class Ophiuroidea. Mol. Biol. Evol. 33, 281–294 (2016).
Parey, E. et al. The brittle star genome illuminates the genetic basis of animal appendage regeneration. Nat. Ecol. Evol. 8, 1505–1521 https://doi.org/10.1038/s41559-024-02456-y (2024).
Stamatakis, A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690 (2006).
Kozlov, A. M., Darriba, D., Flouri, T., Morel, B. & Stamatakis, A. RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 35, 4453–4455 (2019).
Smith, S. A. & O’Meara, B. C. treePL: divergence time estimation using penalized likelihood for large phylogenies. Bioinformatics 28, 2689–2690 (2012).
Drummond, A. J. & Rambaut, A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7, 214 (2007).
Title, P. O. et al. The macroevolutionary singularity of snakes. Science 383, 918–923 (2024).
Henríquez-Piskulich, P., Hugall, A. F. & Stuart-Fox, D. A supermatrix phylogeny of the world’s bees (Hymenoptera: Anthophila). Mol. Phylogenet. Evol. 190, 107963 (2024).
FitzJohn, R. G. Diversitree: comparative phylogenetic analyses of diversification in R. Methods Ecol. Evol. 3, 1084–1092 (2012).
Sanmartín, I. & Meseguer, A. S. Extinction in phylogenetics and biogeography: from timetrees to patterns of biotic assemblage. Front. Genet. 7, 35 (2016).
Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).
Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).
Morlon, H. et al. RPANDA: an R package for macroevolutionary analyses on phylogenetic trees. Methods Ecol. Evol. 7, 589–597 (2016).
Stadler, T. Simulating trees with a fixed number of extant species. Syst. Biol. 60, 676–684 (2011).
Mazet, N., Morlon, H., Fabre, P.-H. & Condamine, F. L. Estimating clade-specific diversification rates and palaeodiversity dynamics from reconstructed phylogenies. Methods Ecol. Evol. 14, 2575–2591 (2023).
Louca, S. & Pennell, M. W. Why extinction estimates from extant phylogenies are so often zero. Curr. Biol. 31, 3168–3173 (2021).
Louca, S. & Doebeli, M. Efficient comparative phylogenetics on large trees. Bioinformatics 34, 1053–1055 (2017).
Swenson, N. G. Phylogenetic beta diversity metrics, trait evolution and inferring the functional beta diversity of communities. PLoS ONE 6, e21264 (2011).
Tucker, C. M. et al. A guide to phylogenetic metrics for conservation, community ecology and macroecology. Biol. Rev. Camb. Philos. Soc. 92, 698–715 (2017).
Oksanen, J. et al. vegan: Community Ecology Package. R package v.2.5-6 (CRAN, 2019).
Ivan, J. et al. Temperature predicts the rate of molecular evolution in Australian Eugongylinae skinks. Evolution 76, 252–261 (2022).
Orton, M. G., May, J. A., Ly, W., Lee, D. J. & Adamowicz, S. J. Is molecular evolution faster in the tropics? Heredity 122, 513–524 (2019).
Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).
Beaulieu, J. M. & O’Meara, B. C. Detecting hidden diversification shifts in models of trait dependent speciation and extinction. Syst. Biol. 65, 583–601 (2016).
Gu, Z., Gu, L., Eils, R., Schlesner, M. & Brors, B. circlize implements and enhances circular visualization in R. Bioinformatics 30, 2811–2812 (2014).
GEBCO Bathymetric Compilation Group 2019. The GEBCO_2019 Grid – a continuous terrain model of the global oceans and land. British Oceanographic Data Centre https://doi.org/10.5285/836f016a-33be-6ddc-e053-6c86abc0788e (2019).
Boyer, T. P. et al. World Ocean Atlas 2018. Temperature, Salinity and Dissolved Oxygen. (NOAA National Centers for Environmental Information, accessed 22 May 2020); www.ncei.noaa.gov/archive/accession/NCEI-WOA18.