Friday, July 25, 2025
No menu items!
HomeNatureSpatiotemporal faunal connectivity across global sea floors

Spatiotemporal faunal connectivity across global sea floors

  • Costello, M. J. et al. Marine biogeographic realms and species endemicity. Nat. Commun. 8, 1057 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Victorero, L. et al. Global benthic biogeographical regions and macroecological drivers for ophiuroids. Ecography 2023, e06627 (2023).


    Google Scholar
     

  • Woolley, S. N. C. et al. Deep-sea diversity patterns are shaped by energy availability. Nature 533, 393–396 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Rabosky, D. L. et al. An inverse latitudinal gradient in speciation rate for marine fishes. Nature 559, 392–395 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • O’Hara, T. D., Hugall, A. F., Woolley, S. N. C., Bribiesca-Contreras, G. & Bax, N. J. Contrasting processes drive ophiuroid phylodiversity across shallow and deep seafloors. Nature 565, 636–639 (2019).

    ADS 
    PubMed 

    Google Scholar
     

  • Vermeij, G. J. When biotas meet: understanding biotic interchange. Science 253, 1099–1104 (1991).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • McClain, C. R. & Hardy, S. M. The dynamics of biogeographic ranges in the deep-sea. Proc. Roy. Soc. B 277, 3533–3546 (2010).


    Google Scholar
     

  • Taylor, M. L. & Roterman, C. N. Invertebrate population genetics across Earth’s largest habitat: the deep-sea floor. Mol. Ecol. 26, 4872–4896 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • O’Hara, T. & Hugall, A. Global seafloor connectivity over evolutionary time. Dryad https://doi.org/10.5061/dryad.xsj3tx9rh (2025).

  • Stöhr, S., O’Hara, T. D. & Thuy, B. Global diversity of brittle stars (Echinodermata: Ophiuroidea). PLoS ONE 7, e31940 (2012).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • O’Hara, T. D., Hugall, A. F., Thuy, B. & Moussalli, A. Phylogenomic resolution of the Class Ophiuroidea unlocks a global microfossil record. Curr. Biol. 24, 1874–1879 (2014).

    PubMed 

    Google Scholar
     

  • O’Hara, T. D., Thuy, B. & Hugall, A. F. Relict from the Jurassic: new family of brittle-stars from a New Caledonian seamount. Proc. Roy. Soc. B 288, 20210684 (2021).


    Google Scholar
     

  • O’Hara, T. D., Hugall, A. F., Thuy, B., Stöhr, S. & Martynov, A. V. Restructuring higher taxonomy using broad-scale phylogenomics: the living Ophiuroidea. Mol. Phylogenet. Evol. 107, 415–430 (2017).

    PubMed 

    Google Scholar
     

  • Friedman, S. T. & Muñoz, M. M. A latitudinal gradient of deep-sea invasions for marine fishes. Nat. Commun. 14, 773 (2023).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mironov, A. N., Dilman, A. & Kylova, E. M. Global distribution patterns of genera occurring in the Arctic Ocean deeper 2000 m. Invertebr. Zool. 10, 167–194 (2013).


    Google Scholar
     

  • Thuy, B. et al. Ancient origin of the modern deep-sea fauna. PLoS ONE 7, e46913 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Crame, J. A. & McGowan, A. J. Origin of the tropical–polar biodiversity contrast. Glob. Ecol. Biogeogr. 31, 1207–1227 (2022).


    Google Scholar
     

  • Bluhm, B. A. et al. Diversity of the Arctic deep-sea benthos. Mar. Biodivers. 41, 87–107 (2011).


    Google Scholar
     

  • Bribiesca-Contreras, G., Verbruggen, H., Hugall, A. F. & O’Hara, T. D. The importance of offshore origination revealed through ophiuroid phylogenomics. Proc. Roy. Soc. B 284, 20170160 (2017).


    Google Scholar
     

  • Brown, A. & Thatje, S. Explaining bathymetric diversity patterns in marine benthic invertebrates and demersal fishes: physiological contributions to adaptation of life at depth. Biol. Rev. Camb. Philos. Soc. 89, 406–426 (2014).

    PubMed 

    Google Scholar
     

  • Bribiesca-Contreras, G., Verbruggen, H., Hugall, A. F. & O’Hara, T. D. Spatio-temporal patterns of tropical shallow-water brittle stars. J. Biogeogr. 46, 1287–1299 (2019).


    Google Scholar
     

  • Vermeij, G. J. Anatomy of an invasion: the trans-Arctic interchange. Paleobiology 17, 281–307 (1991).


    Google Scholar
     

  • Tierney, J. E. et al. Glacial cooling and climate sensitivity revisited. Nature 584, 569–573 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Karstensen, J., Stramma, L. & Visbeck, M. Oxygen minimum zones in the eastern tropical Atlantic and Pacific oceans. Prog. Oceanogr. 77, 331–350 (2008).

    ADS 

    Google Scholar
     

  • Khon, V. C., Hoogakker, B. A. A., Schneider, B., Segschneider, J. & Park, W. Effect of an open Central American Seaway on ocean circulation and the oxygen minimum zone in the tropical Pacific from model simulations. Geophys. Res. Lett. 50, e2023GL103728 (2023).

    ADS 
    CAS 

    Google Scholar
     

  • O’Hara, T. D., England, P. R., Gunasekera, R. & Naughton, K. M. Limited phylogeographic structure for five bathyal ophiuroids at continental scales. Deep Sea Res. I 84, 18–28 (2014).


    Google Scholar
     

  • O’Hara, T. D. & Thuy, B. Biogeography and taxonomy of Ophiuroidea (Echinodermata) from the Îles Saint-Paul and Amsterdam in the southern Indian Ocean. Zootaxa 5124, 1–49 (2022).


    Google Scholar
     

  • Branch, T. A. A review of orange roughy Hoplostethus atlanticus fisheries, estimation methods, biology and stock structure. S. Afr. J. Mar. Sci. 23, 181–203 (2001).


    Google Scholar
     

  • Tong, R. et al. Environmental drivers and the distribution of cold-water corals in the global ocean. Front. Mar. Sci. https://doi.org/10.3389/fmars.2023.1217851 (2023).

  • Henry, L.-A. et al. Global ocean conveyor lowers extinction risk in the deep sea. Deep Sea Res. I 88, 8–16 (2014).

    CAS 

    Google Scholar
     

  • Gubili, C. et al. Species diversity in the cryptic abyssal holothurian Psychropotes longicauda (Echinodermata). Deep Sea Res. II 137, 288–296 (2017).


    Google Scholar
     

  • Meißner, K., Schwentner, M., Götting, M., Knebelsberger, T. & Fiege, D. Polychaetes distributed across oceans—examples of widely recorded species from abyssal depths of the Atlantic and Pacific Oceans. Zool. J. Linn. Soc. 199, 906–944 (2023).


    Google Scholar
     

  • Kaiser, S. et al. Diversity, distribution and composition of abyssal benthic Isopoda in a region proposed for deep-seafloor mining of polymetallic nodules: a synthesis. Mar. Biodivers. 53, 30 (2023).


    Google Scholar
     

  • Meckler, A. N. et al. Cenozoic evolution of deep ocean temperature from clumped isotope thermometry. Science 377, 86–90 (2022).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Auderset, A. et al. Enhanced ocean oxygenation during Cenozoic warm periods. Nature 609, 77–82 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Christodoulou, M., O’Hara, T. D., Hugall, A. F. & Arbizu, P. M. Dark ophiuroid biodiversity in a prospective abyssal mine field. Curr. Biol. 29, 3909–3912 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Christodoulou, M. et al. Unexpected high abyssal ophiuroid diversity in polymetallic nodule fields of the northeast Pacific Ocean and implications for conservation. Biogeosciences 17, 1845–1876 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Young, C. M., Sewell, M. A., Tyler, P. A. & Metaxas, A. Biogeographic and bathymetric ranges of Atlantic deep-sea echinoderms and ascidians: the role of larval dispersal. Biodivers. Conserv. 6, 1507–1522 (1997).


    Google Scholar
     

  • Ricklefs, R. E. A comprehensive framework for global patterns in biodiversity. Ecol. Lett. 7, 1–15 (2004).


    Google Scholar
     

  • Ree, R. H., Webb, C. O. & Donoghue, M. J. A likelihood framework for inferring the evolution of geographic range on phylogenetic trees. Evolution 59, 2299–2311 (2005).

    PubMed 

    Google Scholar
     

  • Goldberg, E. E., Lancaster, L. T. & Ree, R. H. Phylogenetic inference of reciprocal effects between geographic range evolution and diversification. Syst. Biol. 60, 451–465 (2011).

    PubMed 

    Google Scholar
     

  • Landis, M. J., Matzke, N. J., Moore, B. R. & Huelsenbeck, J. P. Bayesian analysis of biogeography when the number of areas is large. Syst. Biol. 62, 789–804 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lewis, P. O. A likelihood approach to estimating phylogeny from discrete morphological character data. Syst. Biol. 50, 913–925 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • Vermeij, G. J. et al. The temperate marine Peruvian Province: how history accounts for its unusual biota. Ecol. Evol. 14, e70048 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hollyman, P. R. et al. Bioregionalization of the South Sandwich Islands through community analysis of bathyal fish and invertebrate assemblages using fishery-derived data. Deep Sea Res. II 198, 105054 (2022).


    Google Scholar
     

  • Hugall, A. F., O’Hara, T. D., Hunjan, S., Nilsen, R. & Moussalli, A. An exon-capture system for the entire class Ophiuroidea. Mol. Biol. Evol. 33, 281–294 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Parey, E. et al. The brittle star genome illuminates the genetic basis of animal appendage regeneration. Nat. Ecol. Evol. 8, 1505–1521 https://doi.org/10.1038/s41559-024-02456-y (2024).

  • Stamatakis, A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • Kozlov, A. M., Darriba, D., Flouri, T., Morel, B. & Stamatakis, A. RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 35, 4453–4455 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smith, S. A. & O’Meara, B. C. treePL: divergence time estimation using penalized likelihood for large phylogenies. Bioinformatics 28, 2689–2690 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Drummond, A. J. & Rambaut, A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7, 214 (2007).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Title, P. O. et al. The macroevolutionary singularity of snakes. Science 383, 918–923 (2024).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Henríquez-Piskulich, P., Hugall, A. F. & Stuart-Fox, D. A supermatrix phylogeny of the world’s bees (Hymenoptera: Anthophila). Mol. Phylogenet. Evol. 190, 107963 (2024).

    PubMed 

    Google Scholar
     

  • FitzJohn, R. G. Diversitree: comparative phylogenetic analyses of diversification in R. Methods Ecol. Evol. 3, 1084–1092 (2012).


    Google Scholar
     

  • Sanmartín, I. & Meseguer, A. S. Extinction in phylogenetics and biogeography: from timetrees to patterns of biotic assemblage. Front. Genet. 7, 35 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).


    Google Scholar
     

  • Morlon, H. et al. RPANDA: an R package for macroevolutionary analyses on phylogenetic trees. Methods Ecol. Evol. 7, 589–597 (2016).


    Google Scholar
     

  • Stadler, T. Simulating trees with a fixed number of extant species. Syst. Biol. 60, 676–684 (2011).

    PubMed 

    Google Scholar
     

  • Mazet, N., Morlon, H., Fabre, P.-H. & Condamine, F. L. Estimating clade-specific diversification rates and palaeodiversity dynamics from reconstructed phylogenies. Methods Ecol. Evol. 14, 2575–2591 (2023).


    Google Scholar
     

  • Louca, S. & Pennell, M. W. Why extinction estimates from extant phylogenies are so often zero. Curr. Biol. 31, 3168–3173 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Louca, S. & Doebeli, M. Efficient comparative phylogenetics on large trees. Bioinformatics 34, 1053–1055 (2017).


    Google Scholar
     

  • Swenson, N. G. Phylogenetic beta diversity metrics, trait evolution and inferring the functional beta diversity of communities. PLoS ONE 6, e21264 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tucker, C. M. et al. A guide to phylogenetic metrics for conservation, community ecology and macroecology. Biol. Rev. Camb. Philos. Soc. 92, 698–715 (2017).

    PubMed 

    Google Scholar
     

  • Oksanen, J. et al. vegan: Community Ecology Package. R package v.2.5-6 (CRAN, 2019).

  • Ivan, J. et al. Temperature predicts the rate of molecular evolution in Australian Eugongylinae skinks. Evolution 76, 252–261 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Orton, M. G., May, J. A., Ly, W., Lee, D. J. & Adamowicz, S. J. Is molecular evolution faster in the tropics? Heredity 122, 513–524 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).

  • Beaulieu, J. M. & O’Meara, B. C. Detecting hidden diversification shifts in models of trait dependent speciation and extinction. Syst. Biol. 65, 583–601 (2016).

    PubMed 

    Google Scholar
     

  • Gu, Z., Gu, L., Eils, R., Schlesner, M. & Brors, B. circlize implements and enhances circular visualization in R. Bioinformatics 30, 2811–2812 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • GEBCO Bathymetric Compilation Group 2019. The GEBCO_2019 Grid – a continuous terrain model of the global oceans and land. British Oceanographic Data Centre https://doi.org/10.5285/836f016a-33be-6ddc-e053-6c86abc0788e (2019).

  • Boyer, T. P. et al. World Ocean Atlas 2018. Temperature, Salinity and Dissolved Oxygen. (NOAA National Centers for Environmental Information, accessed 22 May 2020); www.ncei.noaa.gov/archive/accession/NCEI-WOA18.

  • RELATED ARTICLES

    Most Popular

    Recent Comments