Thursday, March 13, 2025
No menu items!
HomeNatureSpatial immune scoring system predicts hepatocellular carcinoma recurrence

Spatial immune scoring system predicts hepatocellular carcinoma recurrence

  • Zhai, W. et al. The spatial organization of intra-tumour heterogeneity and evolutionary trajectories of metastases in hepatocellular carcinoma. Nat. Commun. 8, 4565 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 
    CAS 

    Google Scholar
     

  • Rumgay, H. et al. Global burden of primary liver cancer in 2020 and predictions to 2040. J. Hepatol. 77, 1598–1606 (2022).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Wu, J. et al. A noninvasive approach to evaluate tumor immune microenvironment and predict outcomes in hepatocellular carcinoma. Phenomics 3, 549–564 (2023).

    Article 
    PubMed 
    PubMed Central 
    MATH 
    CAS 

    Google Scholar
     

  • Brown, Z. J. et al. Management of hepatocellular carcinoma: a review. JAMA Surgery 158, 410–420 (2023).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Singal, A. G., Kudo, M. & Bruix, J. Breakthroughs in hepatocellular carcinoma therapies. Clin. Gastroenterol. Hepatol. 21, 2135–2149 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Elderkin, J. et al. Hepatocellular carcinoma: surveillance, diagnosis, evaluation and management. Cancers 15, 5118 (2023).

    Article 
    PubMed 
    PubMed Central 
    MATH 
    CAS 

    Google Scholar
     

  • Schürch, C. M. et al. Coordinated cellular neighborhoods orchestrate antitumoral immunity at the colorectal cancer invasive front. Cell 182, 1341–1359.e19 (2020).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Casasent, A. K. et al. Multiclonal invasion in breast tumors identified by topographic single cell sequencing. Cell 172, 205–217.e12 (2018).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Sun, C., Sun, H.-y, Xiao, W.-h, Zhang, C. & Tian, Z.-g Natural killer cell dysfunction in hepatocellular carcinoma and NK cell-based immunotherapy. Acta Pharmacol. Sin. 36, 1191–1199 (2015).

    Article 
    PubMed 
    PubMed Central 
    MATH 
    CAS 

    Google Scholar
     

  • Nersesian, S. et al. NK cell infiltration is associated with improved overall survival in solid cancers: a systematic review and meta-analysis. Transl. Oncol. 14, 100930 (2021).

    Article 
    PubMed 
    MATH 
    CAS 

    Google Scholar
     

  • Lee, H. A. et al. Natural killer cell activity is a risk factor for the recurrence risk after curative treatment of hepatocellular carcinoma. BMC Gastroenterol. 21, 258 (2021).

    Article 
    PubMed 
    PubMed Central 
    MATH 
    CAS 

    Google Scholar
     

  • Juengpanich, S. et al. The role of natural killer cells in hepatocellular carcinoma development and treatment: a narrative review. Transl. Oncol. 12, 1092–1107 (2019).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Xue, J. S. et al. The prognostic value of natural killer cells and their receptors/ligands in hepatocellular carcinoma: a systematic review and meta-analysis. Front. Immunol. 13, 872353 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhao, J.-J. et al. Interleukin-37 mediates the antitumor activity in hepatocellular carcinoma: role for CD57+ NK cells. Sci. Rep. 4, 5177 (2014).

    Article 
    PubMed 
    PubMed Central 
    MATH 
    CAS 

    Google Scholar
     

  • Chew, V. et al. Toll-like receptor 3 expressing tumor parenchyma and infiltrating natural killer cells in hepatocellular carcinoma patients. J. Natl Cancer Inst. 104, 1796–1807 (2012).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 
    CAS 

    Google Scholar
     

  • Wu, Y. et al. Monocyte/macrophage-elicited natural killer cell dysfunction in hepatocellular carcinoma is mediated by CD48/2B4 interactions. Hepatology 57, 1107–1116 (2013).

    Article 
    PubMed 
    MATH 
    CAS 

    Google Scholar
     

  • Sun, H. et al. Accumulation of tumor-infiltrating CD49a+ NK cells correlates with poor prognosis for human hepatocellular carcinoma. Cancer Immunol. Res. 7, 1535–1546 (2019).

    Article 
    PubMed 
    MATH 
    CAS 

    Google Scholar
     

  • Sun, H. et al. Human CD96 correlates to natural killer cell exhaustion and predicts the prognosis of human hepatocellular carcinoma. Hepatology 70, 168–183 (2019).

    Article 
    PubMed 
    MATH 
    CAS 

    Google Scholar
     

  • Wu, M., Mei, F., Liu, W. & Jiang, J. Comprehensive characterization of tumor infiltrating natural killer cells and clinical significance in hepatocellular carcinoma based on gene expression profiles. Biomed. Pharmacother. 121, 109637 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Pinyol, R. et al. Molecular predictors of prevention of recurrence in HCC with sorafenib as adjuvant treatment and prognostic factors in the phase 3 STORM trial. Gut 68, 1065–1075 (2019).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Li, J. H. & O’Sullivan, T. E. Back to the future: spatiotemporal determinants of NK cell antitumor function. Front. Immunol. 12, 816658 (2022).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Fu, T. et al. Spatial architecture of the immune microenvironment orchestrates tumor immunity and therapeutic response. J. Hematol. Oncol. 14, 98 (2021).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Wu, L. et al. Spatially-resolved transcriptomics analyses of invasive fronts in solid tumors. Preprint at bioRxiv https://doi.org/10.1101/2021.10.21.465135 (2021).

  • Sorin, M. et al. Single-cell spatial landscapes of the lung tumour immune microenvironment. Nature 614, 548–554 (2023).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 
    CAS 

    Google Scholar
     

  • Elhanani, O., Ben-Uri, R. & Keren, L. Spatial profiling technologies illuminate the tumor microenvironment. Cancer Cell 41, 404–420 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhao, N. et al. Spatial maps of hepatocellular carcinoma transcriptomes highlight an unexplored landscape of heterogeneity and a novel gene signature for survival. Cancer Cell Int. 22, 57 (2022).

    Article 
    PubMed 
    PubMed Central 
    MATH 
    CAS 

    Google Scholar
     

  • Wu, R. et al. Comprehensive analysis of spatial architecture in primary liver cancer. Sci. Adv. 7, eabg3750 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Sun, Y. et al. Single-cell landscape of the ecosystem in early-relapse hepatocellular carcinoma. Cell 184, 404–421.e16 (2021).

    Article 
    PubMed 
    MATH 
    CAS 

    Google Scholar
     

  • Chang, J. et al. Genomic alterations driving precancerous to cancerous lesions in esophageal cancer development. Cancer Cell 41, 2038–2050.e5 (2023).

    Article 
    PubMed 
    MATH 
    CAS 

    Google Scholar
     

  • Li, L. et al. Comprehensive proteogenomic characterization of early duodenal cancer reveals the carcinogenesis tracks of different subtypes. Nat. Commun. 14, 1751 (2023).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 
    CAS 

    Google Scholar
     

  • Mund, A. et al. Deep Visual Proteomics defines single-cell identity and heterogeneity. Nat. Biotechnol. 40, 1231–1240 (2022).

    Article 
    PubMed 
    PubMed Central 
    MATH 
    CAS 

    Google Scholar
     

  • Xiang, H. et al. Region-resolved multi-omics of the mouse eye. Cell Rep. 42, 112121 (2023).

    Article 
    PubMed 
    MATH 
    CAS 

    Google Scholar
     

  • Qu, Y. et al. A proteogenomic analysis of clear cell renal cell carcinoma in a Chinese population. Nat. Commun. 13, 2052 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 
    CAS 

    Google Scholar
     

  • Cheung, C. C. L. et al. Residual SARS-CoV-2 viral antigens detected in GI and hepatic tissues from five recovered patients with COVID-19. Gut 71, 226–229 (2022).

    Article 
    PubMed 
    MATH 
    CAS 

    Google Scholar
     

  • Kaya, N. A. et al. Multimodal molecular landscape of response to Y90-resin microsphere radioembolization followed by nivolumab for advanced hepatocellular carcinoma. J. Immunother. Cancer 11, e007106 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, X. F. et al. Risk factors, patterns, and outcomes of late recurrence after liver resection for hepatocellular carcinoma: a multicenter study from China. JAMA Surg. 154, 209–217 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Lee, S. K. et al. Immunological markers, prognostic factors and challenges following curative treatments for hepatocellular carcinoma. Int. J. Mol. Sci. 22, 10271 (2021).

    Article 
    PubMed 
    PubMed Central 
    MATH 
    CAS 

    Google Scholar
     

  • Jin, S. et al. Inference and analysis of cell–cell communication using CellChat. Nat. Commun. 12, 1088 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 
    CAS 

    Google Scholar
     

  • Medaglia, C. et al. Spatial reconstruction of immune niches by combining photoactivatable reporters and scRNA-seq. Science 358, 1622–1626 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 
    CAS 

    Google Scholar
     

  • Predina, J. D. et al. Characterization of surgical models of postoperative tumor recurrence for preclinical adjuvant therapy assessment. Am. J. Transl. Res. 4, 206–218 (2012).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feng, Y. X. et al. Sorafenib suppresses postsurgical recurrence and metastasis of hepatocellular carcinoma in an orthotopic mouse model. Hepatology 53, 483–492 (2011).

    Article 
    PubMed 
    MATH 
    CAS 

    Google Scholar
     

  • Lim, K. C. et al. Microvascular invasion is a better predictor of tumor recurrence and overall survival following surgical resection for hepatocellular carcinoma compared to the Milan criteria. Ann. Surg. 254, 108–113 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Roayaie, S. et al. A system of classifying microvascular invasion to predict outcome after resection in patients with hepatocellular carcinoma. Gastroenterology 137, 850–855 (2009).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Hack, S. P. et al. IMbrave 050: a phase III trial of atezolizumab plus bevacizumab in high-risk hepatocellular carcinoma after curative resection or ablation. Future Oncol. 16, 975–989 (2020).

    Article 
    PubMed 
    MATH 
    CAS 

    Google Scholar
     

  • Bajorin, D. F. et al. Adjuvant nivolumab versus placebo in muscle-invasive urothelial carcinoma. N. Engl. J. Med. 384, 2102–2114 (2021).

    Article 
    PubMed 
    PubMed Central 
    MATH 
    CAS 

    Google Scholar
     

  • Zhou, Y. et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 10, 1523 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Zhang, X. et al. CellMarker: a manually curated resource of cell markers in human and mouse. Nucleic Acids Res. 47, D721–D728 (2019).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Hu, C. et al. CellMarker 2.0: an updated database of manually curated cell markers in human/mouse and web tools based on scRNA-seq data. Nucleic Acids Res. 51, D870–D876 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Mootha, V. K. et al. PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat. Genet. 34, 267–273 (2003).

    Article 
    PubMed 
    MATH 
    CAS 

    Google Scholar
     

  • Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Lim, J. C. T. et al. An automated staining protocol for seven-colour immunofluorescence of human tissue sections for diagnostic and prognostic use. Pathology 50, 333–341 (2018).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Ng, H. H. M. et al. Immunohistochemical scoring of CD38 in the tumor microenvironment predicts responsiveness to anti-PD-1/PD-L1 immunotherapy in hepatocellular carcinoma. J. Immunother. Cancer 8, e000987 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yeong, J. et al. Prognostic value of CD8+PD-1+ immune infiltrates and PDCD1 gene expression in triple negative breast cancer. J. Immunother. Cancer 7, 34 (2019).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Yeong, J. et al. High densities of tumor-associated plasma cells predict improved prognosis in triple negative breast cancer. Front. Immunol. 9, 1209 (2018).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Bankhead, P. et al. QuPath: open source software for digital pathology image analysis. Sci. Rep. 7, 16878 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Van Acker, H. H., Capsomidis, A., Smits, E. L. & Van Tendeloo, V. F. CD56 in the immune system: more than a marker for cytotoxicity? Front. Immunol. 8, 892 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sung, J. J. et al. Immunohistochemical expression and clinical significance of suggested stem cell markers in hepatocellular carcinoma. J. Pathol. Transl. Med. 50, 52–57 (2016).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Tsuchiya, A. et al. Hepatocellular carcinoma with progenitor cell features distinguishable by the hepatic stem/progenitor cell marker NCAM. Cancer Lett. 309, 95–103 (2011).

    Article 
    PubMed 
    MATH 
    CAS 

    Google Scholar
     

  • Phillips, D. et al. Highly multiplexed phenotyping of immunoregulatory proteins in the tumor microenvironment by CODEX tissue imaging. Front. Immunol. 12, 687673 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Black, S. et al. CODEX multiplexed tissue imaging with DNA-conjugated antibodies. Nat. Protoc. 16, 3802–3835 (2021).

    Article 
    PubMed 
    PubMed Central 
    MATH 
    CAS 

    Google Scholar
     

  • Wu, H. et al. Postmortem high-dimensional immune profiling of severe COVID-19 patients reveals distinct patterns of immunosuppression and immunoactivation. Nat. Commun. 13, 269 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 
    CAS 

    Google Scholar
     

  • Li, R. et al. A body map of somatic mutagenesis in morphologically normal human tissues. Nature 597, 398–403 (2021).

    Article 
    ADS 
    PubMed 
    MATH 
    CAS 

    Google Scholar
     

  • Emmert-Buck, M. R. et al. Laser capture microdissection. Science 274, 998–1001 (1996).

    Article 
    ADS 
    PubMed 
    MATH 
    CAS 

    Google Scholar
     

  • Deng, M. et al. Proteogenomic characterization of cholangiocarcinoma. Hepatology 77, 411–429 (2023).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Schwanhäusser, B. et al. Global quantification of mammalian gene expression control. Nature 473, 337–342 (2011).

    Article 
    ADS 
    PubMed 
    MATH 

    Google Scholar
     

  • Li, T. et al. TIMER2.0 for analysis of tumor-infiltrating immune cells. Nucleic Acids Res. 48, W509–W514 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Andersen, P. K. & Gill, R. D. Cox’s regression model for counting processes: a large sample study. Ann. Stat. 10, 1100–1120 (1982).

    Article 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Therneau, T. M. & Grambsch, P. M. Modeling survival data: extending the Cox model. Stat. Biol. Health https://doi.org/10.1007/978-1-4757-3294-8 (2000).

    Article 
    MATH 

    Google Scholar
     

  • Li, J. et al. Biodegradable electrospun nanofibrous platform integrating antiplatelet therapy–chemotherapy for preventing postoperative tumor recurrence and metastasis. Theranostics 12, 3503–3517 (2022).

    Article 
    PubMed 
    PubMed Central 
    MATH 
    CAS 

    Google Scholar
     

  • Tang, M. et al. Three-dimensional bioprinted glioblastoma microenvironments model cellular dependencies and immune interactions. Cell Res. 30, 833–853 (2020).

    Article 
    PubMed 
    PubMed Central 
    MATH 
    CAS 

    Google Scholar
     

  • Wu, Y. et al. Blockade of T-cell receptor with Ig and ITIM domains elicits potent antitumor immunity in naturally occurring HBV-related HCC in mice. Hepatology 77, 965–981 (2023).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Xu, X. et al. Group-2 innate lymphoid cells promote HCC progression through CXCL2-neutrophil-induced immunosuppression. Hepatology 74, 2526–2543 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments