Thursday, August 14, 2025
No menu items!
HomeNatureSpatial correlation in economic analysis of climate change

Spatial correlation in economic analysis of climate change

  • O’Neill, B. et al. in Climate Change 2022: Impacts, Adaptation and Vulnerability (eds Pörtner, H.-O. et al.) 2411–2538 (Cambridge Univ. Press, 2022).

  • Kotz, M., Levermann, A. & Wenz, L. The economic commitment of climate change. Nature 628, 551–557 (2024).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dell, M., Jones, B. F. & Olken, B. A. Temperature shocks and economic growth: evidence from the last half century. Am. Econ. J. Macroecon. 4, 66–95 (2012).


    Google Scholar
     

  • Burke, M., Hsiang, S. M. & Miguel, E. Global non-linear effect of temperature on eco-nomic production. Nature 527, 235–239 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Pretis, F. et al. Uncertain impacts on economic growth when stabilizing global temperatures at 1.5 °C or 2 °C warming. Phil. Trans. R. Soc. A 376, 20160460 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kahn, M. E. et al. Long-term macroeconomic effects of climate change: a cross-country analysis. Energy Econ. 104, 105624 (2021).


    Google Scholar
     

  • Krichene, H. et al. The social costs of tropical cyclones. Nat. Commun. 14, 7294 (2023).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wenz, L. et al. DOSE—global data set of reported sub-national economic output. Sci. Data 10, 425 (2023).

  • Schlenker, W. & Roberts, M. J. Nonlinear temperature effects indicate severe damages to U.S. crop yields under climate change. Proc. Natl Acad. Sci. USA 106, 15594–15598 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hsiang, S. M. Temperatures and cyclones strongly associated with economic production in the Caribbean and Central America. Proc. Natl Acad. Sci. USA 107, 15367–15372 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Auffhammer, M. et al. Using weather data and climate model output in economic analyses of climate change. Rev. Environ. Econ. Policy 7, 181–198 (2013).


    Google Scholar
     

  • Liang, K. Y. & Zeger, S. L. Longitudinal data analysis using generalized linear models. Biometrika 73, 13–22 (1986).

    MathSciNet 

    Google Scholar
     

  • Akaike, H. Information theory and an extension of the maximum likelihood principle. In Proc. 2nd International Symposium on Information Theory (eds Petrov, B. N. & Csaki, F.) 267–281 (Akademiai Kiado, 1973).

  • Schwarz, G. Estimating the dimension of a model. Ann. Stat. 6, 461–464 (1978).

    MathSciNet 

    Google Scholar
     

  • Field, C. A. & Welsh, A. H. Bootstrapping clustered data. J. R. Stat. Soc. Ser. B 69, 369–390 (2007).

    MathSciNet 

    Google Scholar
     

  • Kotz, M., Wenz, L. & Levermann, A. Data and code for “The economic commitment of climate change”. Zenodo https://doi.org/10.5281/zenodo.10562951 (2024).

  • RELATED ARTICLES

    Most Popular

    Recent Comments