Patel, Z. S. et al. Red risks for a journey to the red planet: the highest priority human health risks for a mission to Mars. npj Microgravity 6, 33 (2020).
Sishc, B. J. et al. The need for biological countermeasures to mitigate the risk of space radiation-induced carcinogenesis, cardiovascular disease, and central nervous system deficiencies. Life Sci. Space Res. 35, 4â8 (2022).
Parsons, J. L. & Townsend, L. W. Interplanetary crew dose rates for the August 1972 solar particle event. Radiat. Res. 153, 729â733 (2000).
Mewaldt, R. A. et al. Record-setting cosmic-ray intensities in 2009 and 2010. Astrophys. J. Lett 723, L1 (2010).
Selesnick, R. S., Baker, D. N., Kanekal, S. G., Hoxie, V. C. & Li, X. Modeling the proton radiation belt with Van Allen Probes relativistic electron-proton telescope data. J. Geophys. Res. Space Phys. 123, 685â697 (2018).
Desai, M. & Giacalone, J. Large gradual solar energetic particle events. Living Rev. Sol. Phys. 13, 3 (2016).
Zeitlin, C. et al. Results from the Radiation Assessment Detector on the International Space Station: part 1, the Charged Particle Detector. Life Sci. Space Res. 39, 67â75 (2023).
Berger, T. et al. DOSIS & DOSIS 3D: radiation measurements with the DOSTEL instruments onboard the Columbus Laboratory of the ISS in the years 2009â2016. J. Space Weather Space Clim. 7, A8 (2017).
Zeitlin, C. et al. Measurements of energetic particle radiation in transit to Mars on the Mars Science Laboratory. Science 340, 1080â1084 (2013).
Schwadron, N. A. et al. Update on the worsening particle radiation environment observed by CRaTER and implications for future human deep-space exploration. Space Weather 16, 289â303 (2018).
Schaefer, H. J., Benton, E. V., Henke, R. P. & Sullivan, J. J. Nuclear track recordings of the astronautsâ radiation exposure on the first lunar landing mission Apollo XI. Radiat. Res. 49, 245â271 (1972).
English, R. A., Benson, R. E., Bailey, J. V. & Barnes, C. M. Apollo experience report: protection against radiation. NASA https://ntrs.nasa.gov/citations/19730010172 (1973).
Fleischer, R. L. et al. Apollo 14 and Apollo 16 heavy-particle dosimetry experiments. Science 181, 436â438 (1973).
Huff, J. L. et al. Galactic cosmic ray simulation at the NASA Space Radiation Laboratoryâprogress, challenges and recommendations on mixed-field effects. Life Sci. Space Res. 36, 90â104 (2023).
Gaza, R. et al. Orion EM-1 Internal Environment Characterization: The Matroshka AstroRad Radiation Experiment (NASA, 2019); https://ntrs.nasa.gov/citations/20190026525.
Berger, T. et al. NASA Artemis I mission and the MARE Experiment (NASA, 2023); https://wrmiss.org/workshops/twentysixth/Berger_MARE.pdf.
Stoffle, N. N. et al. HERA: a Timepix-based radiation detection system for Exploration-class space missions. Life Sci. Space Res. 39, 59â65 (2023).
Straube, U., Berger, T. & Dieckmann, M. The ESA Active Dosimeter (EAD) system onboard the International Space Station (ISS). Z. Med. Phys. 34, 111â139 (2024).
Berger, T. et al. The German Aerospace Center M-42 radiation detectorâa new development for applications in mixed radiation fields. Rev. Sci. Instrum. 90, 125115 (2019).
Gaza, R. et al. The importance of time-resolved personal dosimetry in space: the ISS Crew Active Dosimeter. Life Sci. Space Res. 39, 95â105 (2023).
Cucinotta, F. A. et al. Space radiation cancer risks and uncertainties for Mars missions. Radiat. Res. 156, 682â688 (2001).
Mertens, C. J., Slaba, T. C. & Hu, S. Active dosimeter-based estimate of astronaut acute radiation risk for real-time solar energetic particle events. Space Weather 16, 1291â1316 (2018).
NASA Space Flight Human-System Standard: Volume 1: Crew Health (NASA, 2022); https://www.nasa.gov/sites/default/files/atoms/files/2022-01-05_nasa-std-3001_vol.1_rev._b_final_draft_with_signature_010522.pdf.
Allen, J., Sauer, H., Frank, L. & Reiff, P. Effects of the March 1989 solar activity. Eos Trans. Am. Geophys. Union 70, 1479â1488 (1989).
Hu, S. & Semones, E. A Multi-Source Calibrated GOES Dataset and Solar Radiation Environment Model Update (NASA, 2022); https://ntrs.nasa.gov/citations/20220008181.
OâBrien, T. P. et al. Changes in AE9/AP9-IRENE version 1.5. IEEE Trans. Nucl. Sci. 65, 462â466 (2018).
van den Berg, J., Strauss, D. T. & Effenberger, F. A primer on focused solar energetic particle transport. Space Sci. Rev. 216, 146 (2020).
Wilson, J. W., Slaba, T. C., Badavi, F. F., Reddell, B. D. & Bahadori, A. A. Advances in NASA radiation transport research: 3DHZETRN. Life Sci. Space Res. 2, 6â22 (2014).
Slaba, T. C., Wilson, J. W., Werneth, C. M. & Whitman, K. Updated deterministic radiation transport for future deep space missions. Life Sci. Space Res. 27, 6â18 (2020).
Norbury, J. W., Slaba, T. C., Sobolevsky, N. & Reddell, B. Comparing HZETRN, SHIELD, FLUKA and GEANT transport codes. Life Sci. Space Res. 14, 64â73 (2017).
Singleterry, R. C. et al. OLTARIS: on-line tool for the assessment of radiation in space. Acta Astronaut. 68, 1086â1097 (2011).
Agostinelli, S. et al. GEANT4âa simulation toolkit. Nucl. Instrum. Methods Phys. Res. A 506, 250â303 (2003).
Slaba, T. C. & Whitman, K. The Badhwar-OâNeill 2020 GCR model. Space Weather 18, e2020SW002456 (2020).
International Commission on Radiological Protection 1990 Recommendations of the International Commission on Radiological Protection ICRP Publication 60 (Pergamon Press, 1991).
National Academies of Sciences Space Radiation and Astronaut Health: Managing and Communicating Cancer Risks (National Academies Press, 2021); https://doi.org/10.17226/26155.
Drake, B. G., Hoffman, S. J. & Beaty, D. W. Human exploration of Mars, Design Reference Architecture 5.0. In Proc. 2010 IEEE Aerospace Conference 1â24 (IEEE, 2010).
Hassler, D. M. et al. Marsâ surface radiation environment measured with the Mars Science Laboratoryâs Curiosity rover. Science 343, 1244797 (2014).
Natural radiation in Germany. Federal Office for Radiation Protection https://www.bfs.de/EN/topics/ion/environment/natural-radiation/natural-radiation.html (2023).
Matthiä, D., Burmeister, S., Przybyla, B. & Berger, T. Active radiation measurements over one solar cycle with two DOSTEL instruments in the Columbus laboratory of the International Space Station. Life Sci. Space Res. 39, 14â25 (2023).
Zhang, S. et al. First measurements of the radiation dose on the lunar surface. Sci. Adv. 6, eaaz1334 (2020).
Zeitlin, C. et al. Measurements of radiation quality factor on Mars with the Mars Science Laboratory Radiation Assessment Detector. Life Sci. Space Res. 22, 89â97 (2019).
Llopart, X., Ballabriga, R., Campbell, M., Tlustos, L. & Wong, W. Timepix, a 65k programmable pixel readout chip for arrival time, energy and/or photon counting measurements. Nucl. Instrum. Methods Phys. Res. A 581, 485â494 (2007).
Ballabriga, R., Campbell, M. & Llopart, X. An introduction to the Medipix family ASICs. Radiat. Meas. 136, 106271 (2020).
Holy, T. et al. Pattern recognition of tracks induced by individual quanta of ionizing radiation in Medipix2 silicon detector. Nucl. Instrum. Methods Phys. Res. A 591, 287â290 (2008).
Jakubek, J. Precise energy calibration of pixel detector working in time-over-threshold mode. Nucl. Instrum. Methods Phys. Res. A 633, S262âS266 (2011).
Kroupa, M., Campbell-Ricketts, T., Bahadori, A. & Empl, A. Techniques for precise energy calibration of particle pixel detectors. Rev. Sci. Instrum. 88, 033301 (2017).
George, S. P. et al. Very high energy calibration of silicon Timepix detectors. J. Instrum. 13, P11014 (2018).