Wednesday, October 8, 2025
No menu items!
HomeNatureSouthward impact excavated magma ocean at the lunar South Pole–Aitken basin

Southward impact excavated magma ocean at the lunar South Pole–Aitken basin

  • Wilhelms, D. E. The geologic history of the Moon. United States Geological Survey Professional Paper 1348 (1987).

  • Potter, R. W. K., Collins, G. S., Kiefer, W. S., McGovern, P. J. & Kring, D. A. Constraining the size of the South Pole-Aitken basin impact. Icarus 220, 730–743 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Melosh, H. J. et al. South Pole–Aitken basin ejecta reveal the Moon’s upper mantle. Geology 45, 1063–1066 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Nesvorný, D. et al. Early bombardment of the moon: connecting the lunar crater record to the terrestrial planet formation. Icarus 399, 115545 (2023).

    Article 

    Google Scholar
     

  • Maurice, M., Tosi, N., Schwinger, S., Breuer, D. & Kleine, T. A long-lived magma ocean on a young Moon. Sci. Adv. 6, eaba8949 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miljković, K. et al. Large impact cratering during lunar magma ocean solidification. Nat. Commun. 12, 5433 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Canup, R. M. et al. Origin of the Moon. Rev. Mineral. Geochem. 89, 53–102 (2023).

    Article 

    Google Scholar
     

  • Snyder, G. A., Taylor, A. & Neal, C. R. A chemical model for generating the sources of mare basalts: combined equilibrium and fractional crystallization of the lunar magmasphere. Geochim. Cosmochim. Acta 56, 3809–3823 (1992).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Evans, A. J. et al. Reexamination of early lunar chronology with GRAIL data: terranes, basins, and impact fluxes. J. Geophys. Res. Planets 123, 1596–1617 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Borg, L. E., Gaffney, A. M. & Shearer, C. K. A review of lunar chronology revealing a preponderance of 4.34–4.37 Ga ages. Meteorit. Planet. Sci. 50, 715–732 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Moriarty, D. P. et al. Evidence for a stratified upper mantle preserved within the South Pole-Aitken Basin. J. Geophys. Res. Planets 121, e2020JE006589 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Hurwitz, D. M. & Kring, D. A. Differentiation of the South Pole–Aitken basin impact melt sheet: implications for lunar exploration. J. Geophys. Res. Planets 119, 1110–1133 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Jolliff, B. L., Gillis, J. J., Haskin, L. A., Korotev, R. L. & Wieczorek, M. A. Major lunar crustal terranes: surface expressions and crust-mantle origins. J. Geophys. Res. Planets 105, 4197–4216 (2000).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Garrick-Bethell, I. et al. Troctolite 76535: a sample of the Moon’s South Pole-Aitken basin? Icarus 338, 113430 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Joy, K. H. et al. Evidence of a 4.33 billion year age for the Moon’s South Pole–Aitken basin. Nat. Astron. 9, 55–65 (2025).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Orgel, C. et al. Ancient bombardment of the inner solar system: reinvestigation of the “fingerprints” of different impactor populations on the lunar surface. J. Geophys. Res. Planets 123, 748–762 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Morbidelli, A., Marchi, S., Bottke, W. F. & Kring, D. A. A sawtooth-like timeline for the first billion years of lunar bombardment. Earth Planet. Sci. Lett. 355–356, 144–151 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Garrick-Bethell, I. & Zuber, M. T. Elliptical structure of the lunar South Pole-Aitken basin. Icarus 204, 399–408 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • James, P. B. et al. Deep structure of the lunar South Pole-Aitken basin. Geophys. Res. Lett. 46, 5100–5106 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Andrews-Hanna, J. C. & Zuber, M. T. Elliptical craters and basins on the terrestrial planets. Geol. Soc. Am. Spec. Pap. 465, 1–13 (2010).


    Google Scholar
     

  • Zuber, M. T., Smith, D. E., Lemoine, F. G. & Neumann, G. A. The shape and internal structure of the Moon from the Clementine mission. Science 266, 1839–1843 (1994).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Keane, J. T., James, P. B. & Matsuyama, I. The Moon without impact basins and the nature of the South Pole–Aitken basin and the farside highlands. In Proc. 53rd Lunar and Planetary Science Conference Abstract 1477 (Lunar and Planetary Institute, 2022).

  • Andrews-Hanna, J. C. et al. The structure and evolution of the lunar interior. Rev. Mineral. Geochem. 89, 243–292 (2023).

    Article 

    Google Scholar
     

  • Wieczorek, M. A., Weiss, B. P. & Stewart, S. T. An impactor origin for lunar magnetic anomalies. Science 335, 1212–1215 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hood, L. L. & Artemieva, N. A. Antipodal effects of lunar basin-forming impacts: initial 3D simulations and comparisons with observations. Icarus 193, 485–502 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Wakita, S. et al. Impactor material records the ancient lunar magnetic field in antipodal anomalies. Nat. Commun. 12, 6543 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schultz, P. & Crawford, D. Origin of nearside structural and geochemical anomalies on the Moon. Geol. Soc. Am. Spec. Pap. 477, 141–159 (2011).


    Google Scholar
     

  • Gault, D. E. & Wedekind, J. A. Experimental studies of oblique impact. In 9th Lunar and Planetary Science Conference 3843–3875 (Pergamon Press, 1989).

  • Johnson, B. C. et al. Spherule layers, crater scaling laws, and the population of ancient terrestrial impactors. Icarus 271, 350–359 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Schultz, P. H. & Stickle, A. M. Arrowhead craters and tomahawk basins: signatures of oblique impacts at large scales. In Proc. 42nd Lunar and Planetary Science Conference Abstract 2611 (Lunar and Planetary Institute, 2011).

  • Andrews-Hanna, J. C. et al. Ancient igneous intrusions and early expansion of the Moon revealed by GRAIL gravity gradiometry. Science 339, 675–678 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Leonard, G. J. & Tanaka, K. L. Hellas basin, Mars: formation by oblique impact. In Proc. 24th Lunar and Planetary Science Conference Abstract 867 (Lunar and Planetary Institute, 1993).

  • Tanaka, K. L. & Leonard, G. J. Geology and landscape evolution of the Hellas region of Mars. J. Geophys. Res. Planets. 100, 5407–5432 (1995).

    Article 
    ADS 

    Google Scholar
     

  • Wichman, R. W. & Schultz, P. H. The Crisium basin: implications of an oblique impact for basin ring formation and cavity collapse. In Large Meteorite Impacts and Planetary Evolution, Geological Society of America Special Paper 293 (eds Dressler, B. O., Grieve, R. A. F. & Sharpton, V. L.) https://doi.org/10.1130/SPE293-p61 (Geological Society of America, 1992).

  • Moruzzi, S. A., Andrews-Hanna, J. C., Schenk, P. & Johnson, B. C. Pluto’s Sputnik basin as a peak-ring or multiring basin: a comparative study. Icarus 405, 115721 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Citron, R. I., Smith, D. E., Stewart, S. T., Hood, L. L. & Zuber, M. T. The South Pole-Aitken basin: constraints on impact excavation, melt, and ejecta. Geophys. Res. Lett. 51, e2024GL110034 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Wakita, S. et al. A southward differentiated asteroid forms the South-Pole Aitken basin. In Proc. 56th Lunar and Planetary Science Conference Abstract 1403 (Lunar and Planetary Institute, 2025).

  • Vaughan, W. M. & Head, J. W. Impact melt differentiation in the South Pole-Aitken basin: some observations and speculations. Planet. Space Sci. 91, 101–106 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Gowman, G. & Andrews-Hanna, J. C. Gravity and density structure in the South Pole-Aitken basin rim region: implications for Artemis. In Proc. 55th Lunar and Planetary Science Conference Abstract 1747 (Lunar and Planetary Institute, 2024).

  • Lawrence, D. J., Elphic, R. C., Feldman, W. C. & Prettyman, T. H. Small-area thorium features on the lunar surface. J. Geophys. Res. Planets 108, 5102 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Moriarty, D. P. III & Petro, N. E. Mineralogical characterization of the lunar south polar region: 1. The Artemis exploration zone. J. Geophys. Res. Planets 129, e2023JE008266 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Schmidt, M. W. & Kraettli, G. Experimental crystallization of the lunar magma ocean, initial selenotherm and density stratification, and implications for crust formation, overturn and the bulk silicate Moon composition. J. Geophys. Res. Planets 127, e2022JE007187 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Warren, P. H. & Wasson, J. T. The origin of KREEP. Rev. Geophys. 17, 73–88 (1979).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Broquet, A. & Andrews-Hanna, J. C. The moon before mare. Icarus 408, 115846 (2024).

    Article 

    Google Scholar
     

  • Zhang, Q. W. L. et al. Lunar farside volcanism 2.8 billion years ago from Chang’e-6 basalts. Nature 643, 356–360 (2024).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haskin, L. A. The Imbrium impact event and the thorium distribution at the lunar highlands surface. J. Geophys. Res. Planets 103, 1679–1689 (1998).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Levin, J. N., Evans, A. J., Andrews-Hanna, J. C. & Daubar, I. J. Lunar crustal KREEP distribution. J. Geophys. Res. Planets 130, e2024JE008418 (2025).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Roy, A. et al. The significance of partition coefficients of heat production elements in the lunar interior for determining the present-day selenotherm. In Proc. 54th Lunar and Planetary Science Conference Abstract 2292 (Lunar and Planetary Institute, 2023).

  • Kamata, S. et al. The relative timing of Lunar Magma Ocean solidification and the Late Heavy Bombardment inferred from highly degraded impact basin structures. Icarus 250, 492–503 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Barnes, J. J. et al. Early degassing of lunar urKREEP by crust-breaching impact(s). Earth Planet. Sci. Lett. 447, 84–94 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhang, N. et al. Lunar compositional asymmetry explained by mantle overturn following the South Pole–Aitken impact. Nat. Geosci. 15, 37–41 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Liang, W. et al. Vestiges of a lunar ilmenite layer following mantle overturn revealed by gravity data. Nat. Geosci. 17, 361–366 (2024).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Morbidelli, A. et al. The timeline of the lunar bombardment: revisited. Icarus 305, 262–276 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhu, M.-H. et al. Obliteration of ancient impact basins on the Moon by viscous relaxation. Nat. Astron. 9, 333–346 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Dauphas, N. et al. Completion of lunar magma ocean solidification at 4.43 Ga. Proc. Natl Acad. Sci. USA 122, e2413802121 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zuber, M. T. et al. Gravity field of the Moon from the Gravity Recovery and Interior Laboratory (GRAIL) mission. Science 339, 668–671 (2013).

  • Goossens, S. et al. High‐resolution gravity field models from GRAIL data and implications for models of the density structure of the Moon’s crust. J. Geophys. Res. Planets 125, e2019JE006086 (2020).

  • Neumann, G. A. et al. Lunar impact basins revealed by Gravity Recovery and Interior Laboratory measurements. Sci. Adv. 1, e1500852 (2015).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liang, W. & Andrews-Hanna, J. C. Probing the source of ancient linear gravity anomalies on the Moon. Icarus 380, 114978 (2022).

    Article 

    Google Scholar
     

  • Wieczorek, M. A. & Meschede, M. SHTools: tools for working with spherical harmonics. Geochem. Geophys. Geosyst. 19, 2574–2592 (2018).

  • Andrews-Hanna, J. C. et al. Ring faults and ring dikes around the Orientale basin on the Moon. Icarus 310, 1–20 (2018).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Lawrence, D. J. et al. Global elemental maps of the Moon: the Lunar Prospector gamma-ray spectrometer. Science 281, 1484–1489 (1998).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Prettyman, T. H. et al. Elemental composition of the lunar surface: analysis of gamma ray spectroscopy data from Lunar Prospector. J. Geophys. Res. Planets 111, E12007 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Whitten, J. L. & Head, J. W. Lunar cryptomaria: physical characteristics, distribution, and implications for ancient volcanism. Icarus 247, 150–171 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Jolliff, B. L. et al. Non-mare silicic volcanism on the lunar farside at Compton–Belkovich. Nat. Geosci. 4, 566–571 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Siegler, M. A. et al. Remote detection of a lunar granitic batholith at Compton–Belkovich. Nature 620, 116–121 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hagerty, J. J. et al. Refined thorium abundances for lunar red spots: implications for evolved, nonmare volcanism on the Moon. J. Geophys. Res. Planets 111, E06002 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Wieczorek, M. A. et al. The crust of the Moon as seen by GRAIL. Science 339, 671–675 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Garrick-Bethell, I., Nimmo, F. & Wieczorek, M. A. Structure and formation of the lunar farside highlands. Science 330, 949–951 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Parmentier, E. M., Zhong, S. & Zuber, M. T. Gravitational differentiation due to initial chemical stratification: origin of lunar asymmetry by the creep of dense KREEP? Earth Planet. Sci. Lett. 201, 473–480 (2002).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Jones, M. J. et al. A South Pole–Aitken impact origin of the lunar compositional asymmetry. Sci. Adv. 8, eabm8475 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weber, R. C., Lin, P.-Y., Garnero, E. J., Williams, Q. & Lognonné, P. Seismic detection of the lunar core. Science 331, 309–312 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • James, P. B., Keane, J. T. & Lee, J. S. South Pole-Aitken basin ejecta inferred from crustal thickness. In Proc. 53rd Lunar and Planetary Science Conference Abstract 1500 (Lunar and Planetary Institute, 2022).

  • Salters, V. J. M. & Longhi, J. Trace element partitioning during the initial stages of melting beneath mid-ocean ridges. Earth Planet. Sci. Lett. 166, 15–30 (1999).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Solomatov, V. 9.04 – Magma Oceans and Primordial Mantle Differentiation. In Treatise on Geophysics (Second Edition) Vol. 9 (ed. Schubert, G.) 81–104 https://doi.org/10.1016/B978-0-444-53802-4.00155-X (Elsevier, 2015).

  • McDonough, W. F. & Sun, S.-S. The composition of the Earth. Chem. Geol. 120, 223–253 (1995).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Nemchin, A. A., Pidgeon, R. T., Whitehouse, M. J., Vaughan, J. P. & Meyer, C. SIMS U–Pb study of zircon from Apollo 14 and 17 breccias: implications for the evolution of lunar KREEP. Geochim. Cosmochim. Acta 72, 668–689 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Nemchin, A. et al. Timing of crystallization of the lunar magma ocean constrained by the oldest zircon. Nat. Geosci. 2, 133–136 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Andrews-Hanna, J. C. Code accompanying the paper “Southward impact excavated magma ocean at the lunar South Pole-Aitken basin”. Zenodo https://doi.org/10.5281/zenodo.16816551 (2025).

  • RELATED ARTICLES

    Most Popular

    Recent Comments