Sunday, March 30, 2025
No menu items!
HomeNatureSolidification of Earth’s mantle led inevitably to a basal magma ocean

Solidification of Earth’s mantle led inevitably to a basal magma ocean

  • Dziewonski, A. M., Lekic, V. & Romanowicz, B. A. Mantle anchor structure: an argument for bottom up tectonics. Earth Planet. Sci. Lett. 299, 69–79 (2010).

    ADS 
    CAS 

    Google Scholar
     

  • Tolstikhin, I., Kramers, J. D. & Hofmann, A. W. A chemical earth model with whole mantle convection: the importance of a core–mantle boundary layer (D″) and its early formation. Chem. Geol. 226, 79–99 (2006).

    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Labrosse, S., Hernlund, J. W. & Coltice, N. A crystallizing dense magma ocean at the base of the Earth’s mantle. Nature 450, 866–869 (2007).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Lee, C.-T. A. et al. Upside-down differentiation and generation of a ‘primordial’ lower mantle. Nature 463, 930–933 (2010).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Carlson, R. W. et al. How did early Earth become our modern world? Annu. Rev. Earth Planet. Sci. 42, 151–178 (2014).

    ADS 
    CAS 

    Google Scholar
     

  • Ballmer, M. D., Houser, C., Hernlund, J. W., Wentzcovitch, R. M. & Hirose, K. Persistence of strong silica-enriched domains in the earth’s lower mantle. Nat. Geosci. 10, 236–240 (2017).

    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Willbold, M., Elliott, T. & Moorbath, S. The tungsten isotopic composition of the earth’s mantle before the terminal bombardment. Nature 477, 195–198 (2011).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Touboul, M., Puchtel, I. S. & Walker, R. J. 182W evidence for long-term preservation of early mantle differentiation products. Science 335, 1065–1069 (2012).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Rizo, H., Boyet, M., Blichert-Toft, J. & Rosing, M. T. Early mantle dynamics inferred from 142Nd variations in archean rocks from southwest greenland. Earth Planet. Sci. Lett. 377-378, 324–335 (2013).

    ADS 
    CAS 

    Google Scholar
     

  • Rizo, H. et al. Preservation of earth-forming events in the tungsten isotopic composition of modern flood basalts. Science 352, 809–812 (2016).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Morino, P., Caro, G. & Reisberg, L. Differentiation mechanisms of the early Hadean mantle: insights from combined 176Hf-142,143Nd signatures of Archean rocks from the Saglek block. Geochim. Cosmochim. Acta 240, 43–63 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • Kurz, M. D., Curtice, J., Fornari, D., Geist, D. & Moreira, M. Primitive neon from the center of the Galápagos hotspot. Earth Planet. Sci. Lett. 286, 23–34 (2009).

    ADS 
    CAS 

    Google Scholar
     

  • Mukhopadhyay, S. Early differentiation and volatile accretion recorded in deep-mantle neon and xenon. Nature 486, 101–104 (2012).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Caracausi, A., Avice, G., Burnard, P. G., Füri, E. & Marty, B. Chondritic xenon in the Earth’s mantle. Nature 533, 82–85 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, N., Zhong, S., Leng, W. & Li, Z.-X. A model for the evolution of the Earth’s mantle structure since the Early Paleozoic. J. Geophys. Res. Solid Earth 115, B06401 (2010).

    ADS 

    Google Scholar
     

  • Thorne, M. S., Garnero, E. J. & Grand, S. P. Geographic correlation between hot spots and deep mantle lateral shear-wave velocity gradients. Phys. Earth Planet. Inter. 146, 47–63 (2004).

    ADS 

    Google Scholar
     

  • Burke, K., Steinberger, B., Torsvik, T. H. & Smethurst, M. A. Plume generation zones at the margins of large low shear velocity provinces on the core–mantle boundary. Earth Planet. Sci. Lett. 265, 49–60 (2008).

    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Torsvik, T. H., Burke, K., Steinberger, B., Webb, S. J. & Ashwal, L. D. Diamonds sampled by plumes from the core–mantle boundary. Nature 466, 352–355 (2010).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • French, S. W. & Romanowicz, B. Broad plumes rooted at the base of the earth’s mantle beneath major hotspots. Nature 525, 95–99 (2015).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Fiquet, G. et al. Melting of peridotite to 140 gigapascals. Science 329, 1516–1518 (2010).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Andrault, D. et al. Solidus and liquidus profiles of chondritic mantle: implication for melting of the earth across its history. Earth Planet. Sci. Lett. 304, 251–259 (2011).

    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Boukaré, C.-E., Ricard, Y. & Fiquet, G. Thermodynamics of the MgO-FeO-SiO2 system up to 140 GPa: application to the crystallization of Earth’s magma ocean. J Geophys. Res. Solid Earth 120, 6085–6101 (2015).

    ADS 
    MATH 

    Google Scholar
     

  • Caracas, R., Hirose, K., Nomura, R. & Ballmer, M. D. Melt–crystal density crossover in a deep magma ocean. Earth Planet. Sci. Lett. 516, 202–211 (2019).

    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Miyazaki, Y. & Korenaga, J. On the timescale of magma ocean solidification and its chemical consequences: 2. Compositional differentiation under crystal accumulation and matrix compaction. J. Geophys. Res. Solid Earth 124, 3399–3419 (2019).

    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Solomatov, V. S. in Treatise on Geophysics (ed. Schubert, G.) Vol. 9, 91–119 (Elsevier, 2007).

  • Stixrude, L. & Karki, B. Structure and freezing of MgSiO3 liquid in Earth’s lower mantle. Science 310, 297–299 (2005).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Boukaré, C.-E. & Ricard, Y. Modeling phase separation and phase change for magma ocean solidification dynamics. Geochem. Geophys. Geosyst. 18, 3385–3404 (2017).

    ADS 
    MATH 

    Google Scholar
     

  • Tonks, W. B. & Melosh, H. J. The physics of crystal settling and suspension in a turbulent magma ocean. Orig. Earth 1, 151–174 (1990).

    ADS 
    MATH 

    Google Scholar
     

  • Lavorel, G. & Le Bars, M. Sedimentation of particles in a vigorously convecting fluid. Phys. Rev. E 80, 046324 (2009).

    ADS 
    CAS 

    Google Scholar
     

  • Suckale, J., Elkins-Tanton, L. T. & Sethian, J. A. Crystals stirred up: 2. Numerical insights into the formation of the earliest crust on the moon. J. Geophys. Res. Planets 117, E08005 (2012).

    ADS 

    Google Scholar
     

  • Bower, D. J., Sanan, P. & Wolf, A. S. Numerical solution of a non-linear conservation law applicable to the interior dynamics of partially molten planets. Phys. Earth Planet. Inter. 274, 49–62 (2018).

    ADS 
    MATH 

    Google Scholar
     

  • Maas, C. & Hansen, U. Dynamics of a terrestrial magma ocean under planetary rotation: A study in spherical geometry. Earth Planet. Sci. Lett. 513, 81–94 (2019).

    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Martin, D. & Nokes, R. Crystal settling in a vigorously convecting magma chamber. Nature 332, 534–536 (1988).

    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Hier-Majumder, S. & Hirschmann, M. M. The origin of volatiles in the Earth’s mantle. Geochem. Geophys. Geosyst. 18, 3078–3092 (2017).

    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • McKenzie, D. The generation and compaction of partially molten rock. J. Petrol. 25, 713–765 (1984).

    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Bercovici, D., Ricard, Y. & Schubert, G. A two-phase model for compaction and damage: 1. general theory. J. Geophys. Res. Solid Earth 106, 8887–8906 (2001).

    MATH 

    Google Scholar
     

  • Keller, T. & Suckale, J. A continuum model of multi-phase reactive transport in igneous systems. Geophys. J. Int. 219, 185–222 (2019).

    ADS 
    MATH 

    Google Scholar
     

  • Funamori, N. & Sato, T. Density contrast between silicate melts and crystals in the deep mantle: An integrated view based on static-compression data. Earth Planet. Sci. Lett. 295, 435–440 (2010).

    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Wicks, J. K., Jackson, J. M. & Sturhahn, W. Very low sound velocities in iron-rich (Mg,Fe)O: implications for the core-mantle boundary region. Geophys. Res. Lett. 37, L15304 (2010).

    ADS 

    Google Scholar
     

  • Bower, D. J., Wicks, J. K., Gurnis, M. & Jackson, J. M. A geodynamic and mineral physics model of a solid-state ultralow-velocity zone. Earth Planet. Sci. Lett. 303, 193–202 (2011).

    ADS 
    CAS 

    Google Scholar
     

  • Karki, B. B. & Stixrude, L. P. Viscosity of MgSiO3 liquid at Earth’s mantle conditions: implications for an early magma ocean. Science 328, 740–742 (2010).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Dygert, N., Lin, J.-F., Marshall, E. W., Kono, Y. & Gardner, J. E. A low viscosity lunar magma ocean forms a stratified anorthitic flotation crust with mafic poor and rich units. Geophys. Res. Lett. 44, 11,282–11,291 (2017).


    Google Scholar
     

  • Elkins-Tanton, L. T. Magma oceans in the inner solar system. Annu. Rev. Earth Planet. Sci. 40, 113–139 (2012).

    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Kennedy, A., Lofgren, G. & Wasserburg, G. An experimental study of trace element partitioning between olivine, orthopyroxene and melt in chondrules: equilibrium values and kinetic effects. Earth Planet. Sci. Lett. 115, 177–195 (1993).

    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Corgne, A., Liebske, C., Wood, B. J., Rubie, D. C. & Frost, D. J. Silicate perovskite-melt partitioning of trace elements and geochemical signature of a deep perovskitic reservoir. Geochim. Cosmochim. Acta 69, 485–496 (2005).

    ADS 
    CAS 

    Google Scholar
     

  • Rizo, H. et al. The elusive Hadean enriched reservoir revealed by 142Nd deficits in Isua Archaean rocks. Nature 491, 96–100 (2012).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Caro, G., Bourdon, B., Wood, B. J. & Corgne, A. Trace-element fractionation in Hadean mantle generated by melt segregation from a magma ocean. Nature 436, 246–249 (2005).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Maurice, M. et al. Onset of solid-state mantle convection and mixing during magma ocean solidification. J. Geophys. Res. Planets 122, 577–598 (2017).

    ADS 
    MATH 

    Google Scholar
     

  • Morison, A., Labrosse, S., Deguen, R. & Alboussière, T. Timescale of overturn in a magma ocean cumulate. Earth Planet. Sci. Lett. 516, 25–36 (2019).

    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Mcdonough, W.F. & Sun, S.-s. The composition of the earth. Chem. Geol. 120, 223–253 (1995).

    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Herzberg, C.T. & O’Hara, M.J. Origin of mantle peridotite and komatiite by partial melting. Geophys. Res. Lett. 12, 541–544 (1985).

    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Salvador, A. & Samuel, H. Convective outgassing efficiency in planetary magma oceans: insights from computational fluid dynamics. Icarus 390, 115265 (2023).

    MATH 

    Google Scholar
     

  • Parai, R. A dry ancient plume mantle from noble gas isotopes. Proc. Natl Acad. Sci. USA 119, e2201815119 (2022).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Oliveira, B., Afonso, J. C., Zlotnik, S. & Diez, P. Numerical modelling of multiphase multicomponent reactive transport in the earth’s interior. Geophys. J. Int. 212, 345–388 (2018).

    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Wong, Y.-Q. & Keller, T. A unified numerical model for two-phase porous, mush and suspension flow dynamics in magmatic systems. Geophys. J. Int. 233, 769–795 (2023).

    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Drew, D. A. Averaged field equations for two-phase media. Stud. Appl. Math. 50, 133–166 (1971).

    MATH 

    Google Scholar
     

  • Ribe, N. M. Theory of melt segregation — a review. J. Volcanol. Geotherm. Res. 33, 241–253 (1987).

    ADS 
    MATH 

    Google Scholar
     

  • Katz, R. F. Magma dynamics with the enthalpy method: benchmark solutions and magmatic focusing at mid-ocean ridges. J. Petrol. 49, 2099–2121 (2008).

    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Rudge, J. F., Bercovici, D. & Spiegelman, M. Disequilibrium melting of a two phase multicomponent mantle. Geophys. J. Int. 184, 699–718 (2011).

    ADS 

    Google Scholar
     

  • Katz, R. F., Jones, D. W. R., Rudge, J. F. & Keller, T. Physics of melt extraction from the mantle: speed and style. Ann. Rev. Earth Planet. Sci. 50, 507–540 (2022).

    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Katz, R. F. The Dynamics of Partially Molten Rock (Princeton Univ. Press, 2022).

  • Šrámek, O., Ricard, Y. & Bercovici, D. Simultaneous melting and compaction in deformable two-phase media. Geophys. J. Int. 168, 964–982 (2007).

    ADS 
    MATH 

    Google Scholar
     

  • Šrámek, O. Modèle d’écoulement biphasé en sciences de la Terre: fusion partielle, compaction et différenciation. Ph.D. thesis, Université de Lyon – Ecole Normale Supérieure, Lyon (2007).

  • Samuel, H. Time domain parallelization for computational geodynamics. Geochem. Geophys. Geosyst. 13, Q01003 (2012).

    ADS 
    MATH 

    Google Scholar
     

  • Samuel, H. A deformable particle-in-cell method for advective transport in geodynamic modelling. Geophys. J. Int. 214, 1744–1773 (2018).

    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Samuel, H. & Evonuk, M. Modeling advection in geophysical flows with particle level sets. Geochem. Geophys. Geosyst. 11, Q08020 (2010).

    ADS 
    MATH 

    Google Scholar
     

  • Pusok, A. E., Katz, R. F., May, D. A. & Li, Y. Chemical heterogeneity, convection and asymmetry beneath mid-ocean ridges. Geophys. J. Int. 231, 2055–2078 (2022).

    ADS 
    CAS 

    Google Scholar
     

  • Rabinowicz, M. & Vigneresse, J.-L. Melt segregation under compaction and shear channeling: application to granitic magma segregation in a continental crust. J. Geophys. Res. Solid Earth 109, B04407 (2004).

    ADS 

    Google Scholar
     

  • Nabiei, F. et al. Investigating magma ocean solidification on Earth through laser-heated diamond anvil cell experiments. Geophys. Res. Lett. 48, e2021GL092446 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Rudge, J. F. The viscosities of partially molten materials undergoing diffusion creep. J. Geophys. Res. Solid Earth 123, 10,534–10,562 (2018).

    MATH 

    Google Scholar
     

  • Connolly, J. A. D. & Schmidt, M. W. Viscosity of crystal-mushes and implications for compaction-driven fluid flow. J. Geophys. Res. Solid Earth 127, e2022JB024743 (2022).

    ADS 
    MATH 

    Google Scholar
     

  • Alappat, C. et al. A recursive algebraic coloring technique for hardware-efficient symmetric sparse matrix-vector multiplication. ACM Trans. Parallel Comput. 7, 19 (2020).

    MATH 

    Google Scholar
     

  • Bollhöfer, M., Schenk, O., Janalik, R., Hamm, S. & Gullapalli, K. in Parallel Algorithms in Computational Science and Engineering 3–33 (Springer, 2020).

  • Boukaré, C.-E., Badro, J. & Samuel, H. The solidification of Earth’s early mantle led inevitably to a basal magma ocean. IPGP Research Collection https://doi.org/10.18715/IPGP.2024.m42039nd (2025).

  • RELATED ARTICLES

    Most Popular

    Recent Comments