Friday, January 9, 2026
No menu items!
HomeNatureSoft photonic skins with dynamic texture and colour control

Soft photonic skins with dynamic texture and colour control

  • Kristensen, A. et al. Plasmonic colour generation. Nat. Rev. Mater. 2, 16088 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Holsteen, A. L., Raza, S., Fan, P., Kik, P. G. & Brongersma, M. L. Purcell effect for active tuning of light scattering from semiconductor optical antennas. Science 358, 1407–1410 (2017).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Vynck, K. et al. The visual appearances of disordered optical metasurfaces. Nat. Mater. 21, 1035–1041 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Weyrich, T., Peers, P., Matusik, W. & Rusinkiewicz, S. Fabricating microgeometry for custom surface reflectance. ACM Trans. Graph. 28, 1–6 (2009).

    Article 

    Google Scholar
     

  • Allen, J. J., Mäthger, L. M., Barbosa, A. & Hanlon, R. T. Cuttlefish use visual cues to control three-dimensional skin papillae for camouflage. J. Comp. Physiol. A 195, 547–555 (2009).

    Article 

    Google Scholar
     

  • Allen, J. J., Bell, G. R. R., Kuzirian, A. M. & Hanlon, R. T. Cuttlefish skin papilla morphology suggests a muscular hydrostatic function for rapid changeability. J. Morphol. 274, 645–656 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Kelman, E. J., Baddeley, R. J., Shohet, A. J. & Osorio, D. Perception of visual texture and the expression of disruptive camouflage by the cuttlefish, Sepia officinalis. Proc. R. Soc. B Biol. Sci. 274, 1369–1375 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Barbosa, A. et al. Cuttlefish camouflage: the effects of substrate contrast and size in evoking uniform, mottle or disruptive body patterns. Vis. Res. 48, 1242–1253 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Song, M. et al. Versatile full-colour nanopainting enabled by a pixelated plasmonic metasurface. Nat. Nanotechnol. 18, 71–78 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kolle, M. & Lee, S. Progress and opportunities in soft photonics and biologically inspired optics. Adv. Mater. 30, 1702669 (2018).

    Article 

    Google Scholar
     

  • Walish, J. J., Kang, Y., Mickiewicz, R. A. & Thomas, E. L. Bioinspired electrochemically tunable block copolymer full color pixels. Adv. Mater. 21, 3078–3081 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Cencillo-Abad, P., Franklin, D., Mastranzo-Ortega, P., Sanchez-Mondragon, J. & Chanda, D. Ultralight plasmonic structural color paint. Sci. Adv. 9, eadf7207 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sterl, F., Herkert, E., Both, S., Weiss, T. & Giessen, H. Shaping the color and angular appearance of plasmonic metasurfaces with tailored disorder. ACS Nano 15, 10318–10327 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Agreda, A. et al. Tailoring iridescent visual appearance with disordered resonant metasurfaces. ACS Nano 17, 6362–6372 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pikul, J. H. et al. Stretchable surfaces with programmable 3D texture morphing for synthetic camouflaging skins. Science 358, 210–214 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, J., Hanna, J. A., Byun, M., Santangelo, C. D. & Hayward, R. C. Designing responsive buckled surfaces by halftone gel lithography. Science 335, 1201–1205 (2012).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Q., Gossweiler, G. R., Craig, S. L. & Zhao, X. Cephalopod-inspired design of electro-mechano-chemically responsive elastomers for on-demand fluorescent patterning. Nat. Commun. 5, 4899 (2014).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Ohzono, T., Suzuki, K., Yamaguchi, T. & Fukuda, N. Tunable optical diffuser based on deformable wrinkles. Adv. Opt. Mater. 1, 374–380 (2013).

    Article 

    Google Scholar
     

  • Pratakshya, P. et al. Octopus-inspired deception and signaling systems from an exceptionally-stable acene variant. Nat. Commun. 14, 8528 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, J., Yoon, J. & Hayward, R. C. Dynamic display of biomolecular patterns through an elastic creasing instability of stimuli-responsive hydrogels. Nat. Mater. 9, 159–164 (2010).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Zhang, M. et al. Micro- and nanofabrication of dynamic hydrogels with multichannel information. Nat. Commun. 14, 8208 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oh, J. et al. Dynamic multimodal holograms of conjugated organogels via dithering mask lithography. Nat. Mater. 20, 385–394 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Dai, C., Wang, Z., Shi, Y., Li, Z. & Li, Z. Scalable hydrogel-based nanocavities for switchable meta-holography with dynamic color printing. Nano Lett. 22, 9990–9996 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Guvendiren, M., Burdick, J. A. & Yang, S. Kinetic study of swelling-induced surface pattern formation and ordering in hydrogel films with depth-wise crosslinking gradient. Soft Matter 6, 2044–2049 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Morin, S. A. et al. Camouflage and display for soft machines. Science 337, 828–832 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lassaline, N. et al. Optical Fourier surfaces. Nature 582, 506–510 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu, J. et al. Nano-achiral complex composites for extreme polarization optics. Nature 630, 860–865 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chaudhary, N. et al. Electron beam induced modifications in electrical properties of Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) films. Vacuum 152, 243–247 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Doshi, S. et al. Direct electron beam patterning of electro-optically active PEDOT:PSS. Nanophotonics 13, 2271–2280 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wehner, M. et al. An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature 536, 451–455 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, Q. et al. Metasurface optofluidics for dynamic control of light fields. Nat. Nanotechnol. 17, 1097–1103 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Davies, H. The reflection of electromagnetic waves from a rough surface. Proc. IEE IV Inst. Monogr. 101, 209–214 (1954).


    Google Scholar
     

  • Schröder, S. et al. Modeling of light scattering in different regimes of surface roughness. Opt. Express 19, 9820–9835 (2011).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Matusik, W. et al. Printing spatially-varying reflectance. ACM Trans. Graph. 28, 1–9 (2009).

    Article 

    Google Scholar
     

  • Tan, S. J. et al. Plasmonic color palettes for photorealistic printing with aluminum nanostructures. Nano Lett. 14, 4023–4029 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Jung, C. et al. Disordered-nanoparticle–based etalon for ultrafast humidity-responsive colorimetric sensors and anti-counterfeiting displays. Sci. Adv. 8, eabm8598 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rossi, S. et al. Dynamically tuneable reflective structural coloration with electroactive conducting polymer nanocavities. Adv. Mater. 33, 2105004 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cormier, S., Ding, T., Turek, V. & Baumberg, J. J. Actuating single nano-oscillators with light. Adv. Opt. Mater. 6, 1701281 (2018).

    Article 

    Google Scholar
     

  • Duan, X., Kamin, S. & Liu, N. Dynamic plasmonic colour display. Nat. Commun. 8, 14606 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pappu, R., Recht, B., Taylor, J. & Gershenfeld, N. Physical one-way functions. Science 297, 2026–2030 (2002).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, S.-U. et al. Broadband and pixelated camouflage in inflating chiral nematic liquid crystalline elastomers. Nat. Mater. 21, 41–46 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Dingler, C., Walter, R., Gompf, B. & Ludwigs, S. In situ monitoring of optical constants, conductivity, and swelling of PEDOT:PSS from doped to the fully neutral state. Macromolecules 55, 1600–1608 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Doshi, S. et al. Electrochemically mutable soft metasurfaces. Nat. Mater. 24, 205–211 (2025).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ceballos, A. C., MacWilliams, K. P., Prescop, T. A. & Loewen, R. J. Full-wafer, maskless patterning with sub-50nm resolution and large depth-of-focus enabled by multicolumn electron beam lithography. In Novel Patterning Technologies 2024 Vol. 12956 213–217 (SPIE, 2024).

  • Zheng, Y.-Q. et al. Monolithic optical microlithography of high-density elastic circuits. Science 373, 88–94 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Doshi, S. et al. Thermal processing creates water-stable PEDOT:PSS films for bioelectronics. Adv. Mater. 37, 2415827 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heikenfeld, J. et al. Electrofluidic displays using Young–Laplace transposition of brilliant pigment dispersions. Nat. Photonics 3, 292–296 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Oostra, D. J. in E-Paper Displays (ed. Yang, B.-R.) 197–224 (Wiley, 2022).

  • Koh, A. et al. A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat. Sci. Transl. Med. 8, 366ra165 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sherrington, I. & Smith, E. H. The significance of surface topography in engineering. Precis. Eng. 8, 79–87 (1986).

    Article 

    Google Scholar
     

  • Chen, C. S., Mrksich, M., Huang, S., Whitesides, G. M. & Ingber, D. E. Geometric control of cell life and death. Science 276, 1425–1428 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma, Y. et al. Remote control over underwater dynamic attachment/detachment and locomotion. Adv. Mater. 30, 1801595 (2018).

    Article 

    Google Scholar
     

  • Gopinathan, K. A., Mishra, A., Mutlu, B. R., Edd, J. F. & Toner, M. A microfluidic transistor for automatic control of liquids. Nature 622, 735–741 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gluschke, J. G. et al. Integrated bioelectronic proton-gated logic elements utilizing nanoscale patterned Nafion. Mater. Horiz. 8, 224–233 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, Z. et al. A three-dimensionally architected electronic skin mimicking human mechanosensation. Science 384, 987–994 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Doshi, S. AFM data for “Soft photonic skins with dynamic texture and color control”. Zenodo https://doi.org/10.5281/zenodo.17347008 (2025).

  • RELATED ARTICLES

    Most Popular

    Recent Comments