Friday, January 9, 2026
No menu items!
HomeNatureSoft biodegradable implants for long-distance and wide-angle sensing

Soft biodegradable implants for long-distance and wide-angle sensing

  • Lin, M. Y., Hu, H. J., Zhou, S. & Xu, S. Soft wearable devices for deep-tissue sensing. Nat. Rev. Mater. 7, 850–869 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Suetens, P. Fundamentals of Medical Imaging 3rd edn (Cambridge Univ. Press, 2017).

  • Hu, H. J. et al. A wearable cardiac ultrasound imager. Nature 613, 667–675 (2023).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Lin, M. Y. et al. A fully integrated wearable ultrasound system to monitor deep tissues in moving subjects. Nat. Biotechnol. 42, 448–457 (2024).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Du, W. Y. et al. Conformable ultrasound breast patch for deep tissue scanning and imaging. Sci. Adv. 9, eadh5325 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhou, S. et al. Transcranial volumetric imaging using a conformal ultrasound patch. Nature 629, 810–818 (2024).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Kwon, K. et al. A battery-less wireless implant for the continuous monitoring of vascular pressure, flow rate and temperature. Nat. Biomed. Eng. 7, 1215–1228 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Ouyang, W. et al. A wireless and battery-less implant for multimodal closed-loop neuromodulation in small animals. Nat. Biomed. Eng. 7, 1252–1269 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Song, J. W. et al. Bioresorbable, wireless, and battery-free system for electrotherapy and impedance sensing at wound sites. Sci. Adv. 9, eade4687 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Gleich, B., Schmale, I., Nielsen, T. & Rahmer, J. Miniature magneto-mechanical resonators for wireless tracking and sensing. Science 380, 966–971 (2023).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Wan, J. et al. Millimeter-scale magnetic implants paired with a fully integrated wearable device for wireless biophysical and biochemical sensing. Sci. Adv. 10, eadm9314 (2024).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Lu, D. et al. Bioresorbable Wireless Sensors as Temporary Implants for In Vivo Measurements of Pressure. Adv. Funct. Mater. 30, 2003754 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Boutry, C. M. et al. Biodegradable and flexible arterial-pulse sensor for the wireless monitoring of blood flow. Nat. Biomed. Eng. 3, 47–57 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Lu, D. et al. Bioresorbable, wireless, passive sensors as temporary implants for monitoring regional body temperature. Adv. Healthcare Mater. 9, 2000942 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Li, S. et al. Bioresorbable, wireless, passive sensors for continuous pH measurements and early detection of gastric leakage. Sci. Adv. 10, eadj0268 (2024).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Collins, C. C. Miniature passive pressure transensor for implanting in the eye. IEEE Trans. Biomed. Eng. BME-14, 74–83 (1967).

    Article 
    ADS 

    Google Scholar
     

  • Huang, X. et al. Materials and designs for wireless epidermal sensors of hydration and strain. Adv. Funct. Mater. 24, 3846–3854 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Lee, J. et al. Flexible, sticky, and biodegradable wireless device for drug delivery to brain tumors. Nat. Commun. 10, 5205 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Herbert, R., Lim, H. R., Rigo, B. & Yeo, W. H. Fully implantable wireless batteryless vascular electronics with printed soft sensors for multiplex sensing of hemodynamics. Sci. Adv. 8, eabm1175 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Madhvapathy, S. R. et al. Implantable bioelectronic systems for early detection of kidney transplant rejection. Science 381, 1105–1112 (2023).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Kim, Y. et al. Chip-less wireless electronic skins by remote epitaxial freestanding compound semiconductors. Science 377, 859–869 (2022).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Assawaworrarit, S., Yu, X. F. & Fan, S. H. Robust wireless power transfer using a nonlinear parity-time-symmetric circuit. Nature 546, 387–390 (2017).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Chen, P. Y. et al. Generalized parity-time symmetry condition for enhanced sensor telemetry. Nat. Electron. 1, 297–304 (2018).

    Article 

    Google Scholar
     

  • Dong, Z. Y., Li, Z. P., Yang, F. Y., Qiu, C. W. & Ho, J. S. Sensitive readout of implantable microsensors using a wireless system locked to an exceptional point. Nat. Electron. 2, 335–342 (2019).

    Article 

    Google Scholar
     

  • Bogatin, E. Signal and Power Integrity – Simplified 2nd edn (Prentice Hall, 2010).

  • Kurs, A. et al. Wireless power transfer via strongly coupled magnetic resonances. Science 317, 83–86 (2007).

    Article 
    ADS 
    MathSciNet 
    PubMed 
    CAS 

    Google Scholar
     

  • Haus, H. A. Waves and Fields in Optoelectronics (Prentice Hall, 1984).

  • Karalis, A., Joannopoulos, J. D. & Soljacic, M. Efficient wireless non-radiative mid-range energy transfer. Ann. Phys. 323, 34–48 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Timoshenko, S. Strength of Materials (CBS, 1986).

  • Kim, D.-H. et al. Epidermal electronics. Science 333, 838–843 (2011).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Gyawali, D., Tran, R. T., Guleserian, K. J., Tang, L. & Yang, J. Citric-acid-derived photo-cross-linked biodegradable elastomers. J. Biomater. Sci. Polym. Ed. 21, 1761–1782 (2010).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Hwang, S. W. et al. High-performance biodegradable/transient electronics on biodegradable polymers. Adv. Mater. 26, 3905–3911 (2014).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wang, Y. D., Ameer, G. A., Sheppard, B. J. & Langer, R. A tough biodegradable elastomer. Nat. Biotechnol. 20, 602–606 (2002).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Choi, Y. S. et al. Biodegradable polyanhydrides as encapsulation layers for transient electronics. Adv. Funct. Mater. 30, 2000941 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Boutry, C. M. et al. A stretchable and biodegradable strain and pressure sensor for orthopaedic application. Nat. Electron. 1, 314–321 (2018).

    Article 

    Google Scholar
     

  • Yuk, H. et al. Dry double-sided tape for adhesion of wet tissues and devices. Nature 575, 169–174 (2019).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Boutry, C. M. et al. A sensitive and biodegradable pressure sensor array for cardiovascular monitoring. Adv. Mater. 27, 6954–6961 (2015).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Xiong, Y. X. et al. A flexible, ultra-highly sensitive and stable capacitive pressure sensor with convex microarrays for motion and health monitoring. Nano Energy 70, 104436 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Yang, Q. S. et al. High-speed, scanned laser structuring of multi-layered eco/bioresorbable materials for advanced electronic systems. Nat. Commun. 13, 6518 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments