Thursday, December 12, 2024
No menu items!
HomeNatureSmall-molecule inhibition of SARS-CoV-2 NSP14 RNA cap methyltransferase

Small-molecule inhibition of SARS-CoV-2 NSP14 RNA cap methyltransferase

  • Phillips, N. The coronavirus is here to stay — here’s what that means. Nature 590, 382–384 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Dolgin, E. Pan-coronavirus vaccine pipeline takes form. Nat. Rev. Drug Discov. 21, 324–326 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chaudhary, N., Weissman, D. & Whitehead, K. A. mRNA vaccines for infectious diseases: principles, delivery and clinical translation. Nat. Rev. Drug Discov. 20, 817–838 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, G., Hilgenfeld, R., Whitley, R. & Clercq, E. D. Therapeutic strategies for COVID-19: progress and lessons learned. Nat. Rev. Drug Discov. 22, 449–475 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Malone, B., Urakova, N., Snijder, E. J. & Campbell, E. A. Structures and functions of coronavirus replication–transcription complexes and their relevance for SARS-CoV-2 drug design. Nat. Rev. Mol. Cell Biol. 23, 21–39 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Owen, D. R. et al. An oral SARS-CoV-2 M pro inhibitor clinical candidate for the treatment of COVID-19. Science 374, 1586–1593 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Nencka, R. et al. Coronaviral RNA-methyltransferases: function, structure and inhibition. Nucleic Acids Res. 50, 635–650 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Decroly, E., Ferron, F., Lescar, J. & Canard, B. Conventional and unconventional mechanisms for capping viral mRNA. Nat. Rev. Microbiol. 10, 51–65 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Both, G. W., Furuichi, Y., Muthukrishnan, S. & Shatkin, A. J. Ribosome binding to reovirus mRNA in protein synthesis requires 5′ terminal 7-methylguanosine. Cell 6, 185–195 (1975).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Muthukrishnan, S., Both, G. W., Furuichi, Y. & Shatkin, A. J. 5′-Terminal 7-methylguanosine in eukaryotic mRNA is required for translation. Nature 255, 33–37 (1975).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Both, G. W., Banerjee, A. K. & Shatkin, A. J. Methylation-dependent translation of viral messenger RNAs in vitro. Proc. Natl Acad. Sci. USA 72, 1189–1193 (1975).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ferron, F., Decroly, E., Selisko, B. & Canard, B. The viral RNA capping machinery as a target for antiviral drugs. Antivir. Res. 96, 21–31 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, J. & Zheng, Y. G. SAM/SAH analogs as versatile tools for SAM-dependent methyltransferases. ACS Chem. Biol. 11, 583–597 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Czarna, A. et al. Refolding of lid subdomain of SARS-CoV-2 nsp14 upon nsp10 interaction releases exonuclease activity. Structure 30, 1050–1054.e2 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma, Y. et al. Structural basis and functional analysis of the SARS coronavirus nsp14–nsp10 complex. Proc. Natl Acad. Sci. USA 112, 9436–9441 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ferron, F. et al. Structural and molecular basis of mismatch correction and ribavirin excision from coronavirus RNA. Proc. Natl Acad. Sci. USA 115, E162–E171 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Imprachim, N., Yosaatmadja, Y. & Newman, J. A. Crystal structures and fragment screening of SARS-CoV-2 NSP14 reveal details of exoribonuclease activation and mRNA capping and provide starting points for antiviral drug development. Nucleic Acids Res. 51, 475–487 (2022).

    Article 
    PubMed Central 

    Google Scholar
     

  • Kottur, J., Rechkoblit, O., Quintana-Feliciano, R., Sciaky, D. & Aggarwal, A. K. High-resolution structures of the SARS-CoV-2 N7-methyltransferase inform therapeutic development. Nat. Struct. Mol. Biol. 29, 850–853 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, C. et al. Structural basis of mismatch recognition by a SARS-CoV-2 proofreading enzyme. Science 373, 1142–1146 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bootsma, A. N. & Wheeler, S. E. Tuning stacking interactions between Asp–Arg salt bridges and heterocyclic drug fragments. J. Chem. Inf. Model. 59, 149–158 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Craft, M. K. & Waldrop, G. L. Mechanism of biotin carboxylase inhibition by ethyl 4-[[2-chloro-5-(phenylcarbamoyl)phenyl]sulphonylamino]benzoate. J. Enzyme Inhib. Med. Chem. 37, 100–108 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ward, W. H. J. et al. Kinetic and structural characteristics of the inhibition of enoyl (acyl carrier protein) reductase by triclosan. Biochemistry 38, 12514–12525 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vizán, P., Croce, L. D. & Aranda, S. Functional and pathological roles of AHCY. Front. Cell Dev. Biol. 9, 654344 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chiang, P. K. & Cantoni, G. L. Perturbation of biochemical transmethylations by 3-deazaadenosine in vivo. Biochem. Pharmacol. 28, 1897–1902 (1979).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, L. et al. Susceptibility to SARS-CoV-2 of cell lines and substrates commonly used to diagnose and isolate influenza and other viruses. Emerg. Infect. Dis. 27, 1380–1392 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ogando, N. S. et al. Structure–function analysis of the nsp14 N7-guanine methyltransferase reveals an essential role in Betacoronavirus replication. Proc. Natl Acad. Sci. USA 118, e2108709118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ianevski, A., Giri, A. K. & Aittokallio, T. SynergyFinder 3.0: an interactive analysis and consensus interpretation of multi-drug synergies across multiple samples. Nucleic Acids Res. 50, W739–W743 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Park, G. J. et al. The mechanism of RNA capping by SARS-CoV-2. Nature 609, 793–800 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Varshney, D. et al. Molecular basis of RNA guanine-7 methyltransferase (RNMT) activation by RAM. Nucleic Acids Res. 44, 10423–10436 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, B. et al. Structure and function of the Zika virus full-length NS5 protein. Nat. Commun. 8, 14762 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Coutard, B. et al. Zika virus methyltransferase: structure and functions for drug design perspectives. J. Virol. 91, e02202-16 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Filipowicz, W. et al. A protein binding the methylated 5′-terminal sequence, m7GpppN, of eukaryotic messenger RNA. Proc. Natl Acad. Sci. USA 73, 1559–1563 (1976).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pan, R. et al. N7-methylation of the coronavirus RNA cap is required for maximal virulence by preventing innate immune recognition. mBio 13, e03662-21 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cvetkovic, R. S. & Goa, K. L. Lopinavir/ritonavir: a review of its use in the management of HIV infection. Drugs 63, 769–802 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McKeage, K., Perry, C. M. & Keam, S. J. Darunavir: a review of its use in the management of HIV infection in adults. Drugs 69, 477–503 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McCray, P. B. et al. Lethal infection of K18-hACE2 mice infected with severe acute respiratory syndrome coronavirus. J. Virol. 81, 813–821 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Winkler, E. S. et al. SARS-CoV-2 infection of human ACE2-transgenic mice causes severe lung inflammation and impaired function. Nat. Immunol. 21, 1327–1335 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments