Phillips, N. The coronavirus is here to stay â hereâs what that means. Nature 590, 382â384 (2021).
Dolgin, E. Pan-coronavirus vaccine pipeline takes form. Nat. Rev. Drug Discov. 21, 324â326 (2022).
Chaudhary, N., Weissman, D. & Whitehead, K. A. mRNA vaccines for infectious diseases: principles, delivery and clinical translation. Nat. Rev. Drug Discov. 20, 817â838 (2021).
Li, G., Hilgenfeld, R., Whitley, R. & Clercq, E. D. Therapeutic strategies for COVID-19: progress and lessons learned. Nat. Rev. Drug Discov. 22, 449â475 (2023).
Malone, B., Urakova, N., Snijder, E. J. & Campbell, E. A. Structures and functions of coronavirus replicationâtranscription complexes and their relevance for SARS-CoV-2 drug design. Nat. Rev. Mol. Cell Biol. 23, 21â39 (2022).
Owen, D. R. et al. An oral SARS-CoV-2 M pro inhibitor clinical candidate for the treatment of COVID-19. Science 374, 1586â1593 (2021).
Nencka, R. et al. Coronaviral RNA-methyltransferases: function, structure and inhibition. Nucleic Acids Res. 50, 635â650 (2022).
Decroly, E., Ferron, F., Lescar, J. & Canard, B. Conventional and unconventional mechanisms for capping viral mRNA. Nat. Rev. Microbiol. 10, 51â65 (2011).
Both, G. W., Furuichi, Y., Muthukrishnan, S. & Shatkin, A. J. Ribosome binding to reovirus mRNA in protein synthesis requires 5â² terminal 7-methylguanosine. Cell 6, 185â195 (1975).
Muthukrishnan, S., Both, G. W., Furuichi, Y. & Shatkin, A. J. 5â²-Terminal 7-methylguanosine in eukaryotic mRNA is required for translation. Nature 255, 33â37 (1975).
Both, G. W., Banerjee, A. K. & Shatkin, A. J. Methylation-dependent translation of viral messenger RNAs in vitro. Proc. Natl Acad. Sci. USA 72, 1189â1193 (1975).
Ferron, F., Decroly, E., Selisko, B. & Canard, B. The viral RNA capping machinery as a target for antiviral drugs. Antivir. Res. 96, 21â31 (2012).
Zhang, J. & Zheng, Y. G. SAM/SAH analogs as versatile tools for SAM-dependent methyltransferases. ACS Chem. Biol. 11, 583â597 (2016).
Czarna, A. et al. Refolding of lid subdomain of SARS-CoV-2 nsp14 upon nsp10 interaction releases exonuclease activity. Structure 30, 1050â1054.e2 (2022).
Ma, Y. et al. Structural basis and functional analysis of the SARS coronavirus nsp14ânsp10 complex. Proc. Natl Acad. Sci. USA 112, 9436â9441 (2015).
Ferron, F. et al. Structural and molecular basis of mismatch correction and ribavirin excision from coronavirus RNA. Proc. Natl Acad. Sci. USA 115, E162âE171 (2018).
Imprachim, N., Yosaatmadja, Y. & Newman, J. A. Crystal structures and fragment screening of SARS-CoV-2 NSP14 reveal details of exoribonuclease activation and mRNA capping and provide starting points for antiviral drug development. Nucleic Acids Res. 51, 475â487 (2022).
Kottur, J., Rechkoblit, O., Quintana-Feliciano, R., Sciaky, D. & Aggarwal, A. K. High-resolution structures of the SARS-CoV-2 N7-methyltransferase inform therapeutic development. Nat. Struct. Mol. Biol. 29, 850â853 (2022).
Liu, C. et al. Structural basis of mismatch recognition by a SARS-CoV-2 proofreading enzyme. Science 373, 1142â1146 (2021).
Bootsma, A. N. & Wheeler, S. E. Tuning stacking interactions between AspâArg salt bridges and heterocyclic drug fragments. J. Chem. Inf. Model. 59, 149â158 (2019).
Craft, M. K. & Waldrop, G. L. Mechanism of biotin carboxylase inhibition by ethyl 4-[[2-chloro-5-(phenylcarbamoyl)phenyl]sulphonylamino]benzoate. J. Enzyme Inhib. Med. Chem. 37, 100â108 (2022).
Ward, W. H. J. et al. Kinetic and structural characteristics of the inhibition of enoyl (acyl carrier protein) reductase by triclosan. Biochemistry 38, 12514â12525 (1999).
Vizán, P., Croce, L. D. & Aranda, S. Functional and pathological roles of AHCY. Front. Cell Dev. Biol. 9, 654344 (2021).
Chiang, P. K. & Cantoni, G. L. Perturbation of biochemical transmethylations by 3-deazaadenosine in vivo. Biochem. Pharmacol. 28, 1897â1902 (1979).
Wang, L. et al. Susceptibility to SARS-CoV-2 of cell lines and substrates commonly used to diagnose and isolate influenza and other viruses. Emerg. Infect. Dis. 27, 1380â1392 (2021).
Ogando, N. S. et al. Structureâfunction analysis of the nsp14 N7-guanine methyltransferase reveals an essential role in Betacoronavirus replication. Proc. Natl Acad. Sci. USA 118, e2108709118 (2021).
Ianevski, A., Giri, A. K. & Aittokallio, T. SynergyFinder 3.0: an interactive analysis and consensus interpretation of multi-drug synergies across multiple samples. Nucleic Acids Res. 50, W739âW743 (2022).
Park, G. J. et al. The mechanism of RNA capping by SARS-CoV-2. Nature 609, 793â800 (2022).
Varshney, D. et al. Molecular basis of RNA guanine-7 methyltransferase (RNMT) activation by RAM. Nucleic Acids Res. 44, 10423â10436 (2016).
Zhao, B. et al. Structure and function of the Zika virus full-length NS5 protein. Nat. Commun. 8, 14762 (2017).
Coutard, B. et al. Zika virus methyltransferase: structure and functions for drug design perspectives. J. Virol. 91, e02202-16 (2017).
Filipowicz, W. et al. A protein binding the methylated 5â²-terminal sequence, m7GpppN, of eukaryotic messenger RNA. Proc. Natl Acad. Sci. USA 73, 1559â1563 (1976).
Pan, R. et al. N7-methylation of the coronavirus RNA cap is required for maximal virulence by preventing innate immune recognition. mBio 13, e03662-21 (2022).
Cvetkovic, R. S. & Goa, K. L. Lopinavir/ritonavir: a review of its use in the management of HIV infection. Drugs 63, 769â802 (2003).
McKeage, K., Perry, C. M. & Keam, S. J. Darunavir: a review of its use in the management of HIV infection in adults. Drugs 69, 477â503 (2009).
McCray, P. B. et al. Lethal infection of K18-hACE2 mice infected with severe acute respiratory syndrome coronavirus. J. Virol. 81, 813â821 (2007).
Winkler, E. S. et al. SARS-CoV-2 infection of human ACE2-transgenic mice causes severe lung inflammation and impaired function. Nat. Immunol. 21, 1327â1335 (2020).