Rice, J. R. & Ruina, A. L. Stability of steady frictional slipping. J. Appl. Mech. 50, 343–349 (1983).
Dieterich, J. H. in Treatise on Geophysics 2nd edn (ed. Schubert, G.) Vol. 4, 93–110 (Elsevier, 2007).
Ampuero, J.-P. & Rubin, A. M. Earthquake nucleation on rate and state faults – aging and slip laws. J. Geophys. Res. Solid Earth 113, 2007JB005082 (2008).
Scholz, C. H. The Mechanics of Earthquakes and Faulting (Cambridge Univ. Press, 2019).
Handwerger, A. L., Rempel, A. W., Skarbek, R. M., Roering, J. J. & Hilley, G. E. Rate-weakening friction characterizes both slow sliding and catastrophic failure of landslides. Proc. Natl Acad. Sci. USA 113, 10281–10286 (2016).
Zoet, L. K. & Iverson, N. R. A healing mechanism for stick-slip of glaciers. Geology 46, 807–810 (2018).
Thøgersen, K., Gilbert, A., Schuler, T. V. & Malthe-Sørenssen, A. Rate-and-state friction explains glacier surge propagation. Nat. Commun. 10, 2823 (2019).
Kinkaid, N. M., O’Reilly, O. M. & Papadopoulos, P. Automotive disc brake squeal. J. Sound Vib. 267, 105–166 (2003).
Rabinowicz, E. Stick and slip. Sci. Am. 194, 109–119 (1956).
Dowson, D. History of Tribology 2nd edn (Wiley, 1998).
Bhattacharya, P. & Viesca, R. C. Fluid-induced aseismic fault slip outpaces pore-fluid migration. Science 364, 464–468 (2019).
Lapusta, N., Rice, J. R., Ben‐Zion, Y. & Zheng, G. Elastodynamic analysis for slow tectonic loading with spontaneous rupture episodes on faults with rate‐ and state‐dependent friction. J. Geophys. Res. 105, 23765–23789 (2000).
Rice, J. R., Lapusta, N. & Ranjith, K. Rate and state dependent friction and the stability of sliding between elastically deformable solids. J. Mech. Phys. Solids 49, 1865–1898 (2001).
Dieterich, J. H. A constitutive law for rate of earthquake production and its application to earthquake clustering. J. Geophys. Res. 99, 2601–2618 (1994).
Marone, C. The effect of loading rate on static friction and the rate of fault healing during the earthquake cycle. Nature 391, 69–72 (1998).
Bhattacharya, P., Rubin, A. M., Tullis, T. E., Beeler, N. M. & Okazaki, K. The evolution of rock friction is more sensitive to slip than elapsed time, even at near-zero slip rates. Proc. Natl Acad. Sci. USA 119, e2119462119 (2022).
Rubino, V., Rosakis, A. J. & Lapusta, N. Understanding dynamic friction through spontaneously evolving laboratory earthquakes. Nat. Commun. 8, 15991 (2017).
Rosakis, A. J., Rubino, V. & Lapusta, N. Recent milestones in unraveling the full-field structure of dynamic shear cracks and fault ruptures in real-time: from photoelasticity to ultrahigh-speed digital image correlation. J. Appl. Mech. 87, 030801 (2020).
Leeman, J. R., Saffer, D. M., Scuderi, M. M. & Marone, C. Laboratory observations of slow earthquakes and the spectrum of tectonic fault slip modes. Nat. Commun. 7, 11104 (2016).
Gvirtzman, S. & Fineberg, J. Nucleation fronts ignite the interface rupture that initiates frictional motion. Nat. Phys. 17, 1037–1042 (2021).
Ruina, A. Slip instability and state variable friction laws. J. Geophys. Res. 88, 10359–10370 (1983).
Ader, T. J., Lapusta, N., Avouac, J.-P. & Ampuero, J.-P. Response of rate-and-state seismogenic faults to harmonic shear-stress perturbations. Geophys. J. Int. 198, 385–413 (2014).
Sirorattanakul, K. et al. The 2020 Westmorland, California earthquake swarm as aftershocks of a slow slip event sustained by fluid flow. J. Geophys. Res. Solid Earth 127, e2022JB024693 (2022).
Acosta, M. et al. Earthquake nucleation characteristics revealed by seismicity response to seasonal stress variations induced by gas production at Groningen. Geophys. Res. Lett. 50, e2023GL105455 (2023).
Heimisson, E. R., Smith, J. D., Avouac, J.-P. & Bourne, S. J. Coulomb threshold rate-and-state model for fault reactivation: application to induced seismicity at Groningen. Geophys. J. Int. 228, 2061–2072 (2022).
Dieterich, J. H. Modeling of rock friction: 1. Experimental results and constitutive equations. J. Geophys. Res. 84, 2161 (1979).
Marone, C. Laboratory-derived friction laws and their application to seismic faulting. Annu. Rev. Earth Planet. Sci. 26, 643–696 (1998).
Rabinowicz, E. The nature of the static and kinetic coefficients of friction. J. Appl. Phys 22, 1373–1379 (1951).
Gu, J.-C., Rice, J. R., Ruina, A. L. & Tse, S. T. Slip motion and stability of a single degree of freedom elastic system with rate and state dependent friction. J. Mech. Phys. Solids 32, 167–196 (1984).
Daub, E. G. & Carlson, J. M. A constitutive model for fault gouge deformation in dynamic rupture simulations. J. Geophys. Res. Solid Earth 113, 2007JB005377 (2008).
Rubino, V., Rosakis, A. J. & Lapusta, N. Full-field ultrahigh-speed quantification of dynamic shear ruptures using digital image correlation. Exp. Mech. 59, 551–582 (2019).
Sutton, M. A., Orteu, J.-J. & Schreier, H. W. Image Correlation for Shape, Motion and Deformation Measurements (Springer, 2009).
Beeler, N. M., Tullis, T. E. & Weeks, J. D. The roles of time and displacement in the evolution effect in rock friction. Geophys. Res. Lett. 21, 1987–1990 (1994).
Barbot, S., Lapusta, N. & Avouac, J.-P. Under the hood of the earthquake machine: toward predictive modeling of the seismic cycle. Science 336, 707–710 (2012).
Lacroix, P., Handwerger, A. L. & Bièvre, G. Life and death of slow-moving landslides. Nat. Rev. Earth Environ. 1, 404–419 (2020).
Dempsey, D. & Suckale, J. Physics-based forecasting of induced seismicity at Groningen gas field, the Netherlands. Geophys. Res. Lett. 44, 7773–7782 (2017).
Ida, Y. Cohesive force across the tip of a longitudinal-shear crack and Griffith’s specific surface energy. J. Geophys. Res. 77, 3796–3805 (1972).
Palmer, A. C. & Rice, J. R. The growth of slip surfaces in the progressive failure of over-consolidated clay. Proc. R. Soc. Lond. A 332, 527–548 (1973).
Freund, L. B. Dynamic Fracture Mechanics (Cambridge Univ. Press, 1990).
Ohnaka, M. A constitutive scaling law and a unified comprehension for frictional slip failure, shear fracture of intact rock, and earthquake rupture. J. Geophys. Res. 108, 2000JB000123 (2003).
Xia, K., Rosakis, A. J. & Kanamori, H. Laboratory Earthquakes: the sub-Rayleigh-to-supershear rupture transition. Science 303, 1859–1861 (2004).
Nakatani, M. Conceptual and physical clarification of rate and state friction: frictional sliding as a thermally activated rheology. J. Geophys. Res 106, 13347–13380 (2001).
Marone, C. J., Scholtz, C. H. & Bilham, R. On the mechanics of earthquake afterslip. J. Geophys. Res. Solid Earth 96, 8441–8452 (1991).
Bürgmann, R. et al. Earthquake potential along the Northern Hayward Fault, California. Science 289, 1178–1182 (2000).
Perfettini, H. et al. Seismic and aseismic slip on the Central Peru megathrust. Nature 465, 78–81 (2010).
Lu, X., Lapusta, N. & Rosakis, A. J. Pulse-like and crack-like ruptures in experiments mimicking crustal earthquakes. Proc. Natl Acad. Sci. USA 104, 18931–18936 (2007).
Gori, M., Rubino, V., Rosakis, A. J. & Lapusta, N. Dynamic rupture initiation and propagation in a fluid-injection laboratory setup with diagnostics across multiple temporal scales. Proc. Natl Acad. Sci. USA 118, e2023433118 (2021).
Rubino, V., Lapusta, N. & Rosakis, A. J. Intermittent lab earthquakes in dynamically weakening fault gouge. Nature 606, 922–929 (2022).
Shearer, P. M. Introduction to Seismology (Cambridge Univ. Press, 2019).
Chester, F. M. & Chester, J. S. Ultracataclasite structure and friction processes of the Punchbowl fault, San Andreas system, California. Tectonophysics 295, 199–221 (1998).
Mello, M. Identifying the unique ground motion signatures of supershear earthquakes: theory and experiments. PhD dissertation (California Institute of Technology, 2012).
Mello, M., Bhat, H. S., Rosakis, A. J. & Kanamori, H. Identifying the unique ground motion signatures of supershear earthquakes: theory and experiments. Tectonophysics 493, 297–326 (2010).
Rubino, V., Rosakis, A. J. & Lapusta, N. Spatiotemporal properties of sub‐Rayleigh and supershear ruptures inferred from full‐field dynamic imaging of laboratory experiments. J. Geophys. Res. Solid Earth 125, e2019JB018922 (2020).
Tal, Y., Rubino, V., Rosakis, A. J. & Lapusta, N. Illuminating the physics of dynamic friction through laboratory earthquakes on thrust faults. Proc. Natl Acad. Sci. USA 117, 21095–21100 (2020).
Lattanzi, A. et al. Uncertainty analysis of dynamic rupture measurements obtained through ultrahigh-speed digital image correlation. Exp. Mech. 63, 529–563 (2023).
Tullis, T. E. & Weeks, J. D. Constitutive behavior and stability of frictional sliding of granite. Pure Appl. Geophys. 124, 383–414 (1986).
Blanpied, M. L., Lockner, D. A. & Byerlee, J. D. Frictional slip of granite at hydrothermal conditions. J. Geophys. Res. 100, 13045–13064 (1995).
Marone, C., Raleigh, C. B. & Scholz, C. H. Frictional behavior and constitutive modeling of simulated fault gouge. J. Geophys. Res. 95, 7007–7025 (1990).
Segall, P. & Rice, J. R. Dilatancy, compaction, and slip instability of a fluid‐infiltrated fault. J. Geophys. Res. 100, 22155–22171 (1995).
Hulikal, S., Lapusta, N. & Bhattacharya, K. Static and sliding contact of rough surfaces: effect of asperity-scale properties and long-range elastic interactions. J. Mech. Phys. Solids 116, 217–238 (2018).
Dieterich, J. H. & Kilgore, B. D. Direct observation of frictional contacts: new insights for state-dependent properties. Pure Appl. Geophys. 143, 283–302 (1994).
Berthoud, P., Baumberger, T., G’Sell, C. & Hiver, J.-M. Physical analysis of the state- and rate-dependent friction law: static friction. Phys. Rev. B 59, 14313–14327 (1999).
Ben-David, O., Rubinstein, S. M. & Fineberg, J. Slip-stick and the evolution of frictional strength. Nature 463, 76–79 (2010).
Ikari, M. J., Carpenter, B. M. & Marone, C. A microphysical interpretation of rate‐ and state‐dependent friction for fault gouge. Geochem. Geophys. Geosyst. 17, 1660–1677 (2016).
Perfettini, H. & Molinari, A. A micromechanical model of rate and state friction: 1. Static and dynamic sliding. J. Geophys. Res. Solid Earth 122, 2590–2637 (2017).
Li, Q., Tullis, T. E., Goldsby, D. & Carpick, R. W. Frictional ageing from interfacial bonding and the origins of rate and state friction. Nature 480, 233–236 (2011).
Dieterich, J. H. in Mechanical Behavior of Crustal Rocks: The Handin Volume Geophysical Monograph Series, Vol. 24 (eds Carter, N. L. et al.) 103–120 (American Geophysical Union, 1981).
Stesky, R. M. Rock friction-effect of confining pressure, temperature, and pore pressure. Pure Appl. Geophys. 116, 690–704 (1978).
Brechet, Y. & Estrin, Y. The effect of strain rate sensitivity on dynamic friction of metals. Scr. Metall. Mater. 30, 1449–1454 (1994).
Chester, F. M. Effects of temperature on friction: constitutive equations and experiments with quartz gouge. J. Geophys. Res. 99, 7247–7261 (1994).
Heslot, F., Baumberger, T., Perrin, B., Caroli, B. & Caroli, C. Creep, stick-slip, and dry-friction dynamics: experiments and a heuristic model. Phys. Rev. E 49, 4973–4988 (1994).
Sleep, N. H. Application of a unified rate and state friction theory to the mechanics of fault zones with strain localization. J. Geophys. Res. 102, 2875–2895 (1997).
Baumberger, T. Contact dynamics and friction at a solid-solid interface: material versus statistical aspects. Solid State Commun. 102, 175–185 (1997).
Persson, B. N. J. On the theory of rubber friction. Surf. Sci. 401, 445–454 (1998).
Perfettini, H. & Avouac, J.-P. Postseismic relaxation driven by brittle creep: a possible mechanism to reconcile geodetic measurements and the decay rate of aftershocks, application to the Chi-Chi earthquake, Taiwan. J. Geophys. Res. 109, B02304 (2004).