Thursday, March 13, 2025
No menu items!
HomeNatureSliding and healing of frictional interfaces that appear stationary

Sliding and healing of frictional interfaces that appear stationary

  • Rice, J. R. & Ruina, A. L. Stability of steady frictional slipping. J. Appl. Mech. 50, 343–349 (1983).

    Article 
    MATH 

    Google Scholar
     

  • Dieterich, J. H. in Treatise on Geophysics 2nd edn (ed. Schubert, G.) Vol. 4, 93–110 (Elsevier, 2007).

  • Ampuero, J.-P. & Rubin, A. M. Earthquake nucleation on rate and state faults – aging and slip laws. J. Geophys. Res. Solid Earth 113, 2007JB005082 (2008).

    Article 

    Google Scholar
     

  • Scholz, C. H. The Mechanics of Earthquakes and Faulting (Cambridge Univ. Press, 2019).

  • Handwerger, A. L., Rempel, A. W., Skarbek, R. M., Roering, J. J. & Hilley, G. E. Rate-weakening friction characterizes both slow sliding and catastrophic failure of landslides. Proc. Natl Acad. Sci. USA 113, 10281–10286 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zoet, L. K. & Iverson, N. R. A healing mechanism for stick-slip of glaciers. Geology 46, 807–810 (2018).

    Article 
    MATH 

    Google Scholar
     

  • Thøgersen, K., Gilbert, A., Schuler, T. V. & Malthe-Sørenssen, A. Rate-and-state friction explains glacier surge propagation. Nat. Commun. 10, 2823 (2019).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Kinkaid, N. M., O’Reilly, O. M. & Papadopoulos, P. Automotive disc brake squeal. J. Sound Vib. 267, 105–166 (2003).

    Article 
    MATH 

    Google Scholar
     

  • Rabinowicz, E. Stick and slip. Sci. Am. 194, 109–119 (1956).

    Article 
    MATH 

    Google Scholar
     

  • Dowson, D. History of Tribology 2nd edn (Wiley, 1998).

  • Bhattacharya, P. & Viesca, R. C. Fluid-induced aseismic fault slip outpaces pore-fluid migration. Science 364, 464–468 (2019).

    Article 
    MathSciNet 
    PubMed 
    MATH 

    Google Scholar
     

  • Lapusta, N., Rice, J. R., Ben‐Zion, Y. & Zheng, G. Elastodynamic analysis for slow tectonic loading with spontaneous rupture episodes on faults with rate‐ and state‐dependent friction. J. Geophys. Res. 105, 23765–23789 (2000).

    Article 
    MATH 

    Google Scholar
     

  • Rice, J. R., Lapusta, N. & Ranjith, K. Rate and state dependent friction and the stability of sliding between elastically deformable solids. J. Mech. Phys. Solids 49, 1865–1898 (2001).

    Article 
    MATH 

    Google Scholar
     

  • Dieterich, J. H. A constitutive law for rate of earthquake production and its application to earthquake clustering. J. Geophys. Res. 99, 2601–2618 (1994).

    Article 
    MATH 

    Google Scholar
     

  • Marone, C. The effect of loading rate on static friction and the rate of fault healing during the earthquake cycle. Nature 391, 69–72 (1998).

    Article 
    MATH 

    Google Scholar
     

  • Bhattacharya, P., Rubin, A. M., Tullis, T. E., Beeler, N. M. & Okazaki, K. The evolution of rock friction is more sensitive to slip than elapsed time, even at near-zero slip rates. Proc. Natl Acad. Sci. USA 119, e2119462119 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rubino, V., Rosakis, A. J. & Lapusta, N. Understanding dynamic friction through spontaneously evolving laboratory earthquakes. Nat. Commun. 8, 15991 (2017).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Rosakis, A. J., Rubino, V. & Lapusta, N. Recent milestones in unraveling the full-field structure of dynamic shear cracks and fault ruptures in real-time: from photoelasticity to ultrahigh-speed digital image correlation. J. Appl. Mech. 87, 030801 (2020).

    Article 
    MATH 

    Google Scholar
     

  • Leeman, J. R., Saffer, D. M., Scuderi, M. M. & Marone, C. Laboratory observations of slow earthquakes and the spectrum of tectonic fault slip modes. Nat. Commun. 7, 11104 (2016).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Gvirtzman, S. & Fineberg, J. Nucleation fronts ignite the interface rupture that initiates frictional motion. Nat. Phys. 17, 1037–1042 (2021).

    Article 
    MATH 

    Google Scholar
     

  • Ruina, A. Slip instability and state variable friction laws. J. Geophys. Res. 88, 10359–10370 (1983).

    Article 
    MATH 

    Google Scholar
     

  • Ader, T. J., Lapusta, N., Avouac, J.-P. & Ampuero, J.-P. Response of rate-and-state seismogenic faults to harmonic shear-stress perturbations. Geophys. J. Int. 198, 385–413 (2014).

    Article 

    Google Scholar
     

  • Sirorattanakul, K. et al. The 2020 Westmorland, California earthquake swarm as aftershocks of a slow slip event sustained by fluid flow. J. Geophys. Res. Solid Earth 127, e2022JB024693 (2022).

    Article 

    Google Scholar
     

  • Acosta, M. et al. Earthquake nucleation characteristics revealed by seismicity response to seasonal stress variations induced by gas production at Groningen. Geophys. Res. Lett. 50, e2023GL105455 (2023).

    Article 

    Google Scholar
     

  • Heimisson, E. R., Smith, J. D., Avouac, J.-P. & Bourne, S. J. Coulomb threshold rate-and-state model for fault reactivation: application to induced seismicity at Groningen. Geophys. J. Int. 228, 2061–2072 (2022).

    Article 

    Google Scholar
     

  • Dieterich, J. H. Modeling of rock friction: 1. Experimental results and constitutive equations. J. Geophys. Res. 84, 2161 (1979).

    Article 
    MATH 

    Google Scholar
     

  • Marone, C. Laboratory-derived friction laws and their application to seismic faulting. Annu. Rev. Earth Planet. Sci. 26, 643–696 (1998).

    Article 
    MATH 

    Google Scholar
     

  • Rabinowicz, E. The nature of the static and kinetic coefficients of friction. J. Appl. Phys 22, 1373–1379 (1951).

    Article 
    MATH 

    Google Scholar
     

  • Gu, J.-C., Rice, J. R., Ruina, A. L. & Tse, S. T. Slip motion and stability of a single degree of freedom elastic system with rate and state dependent friction. J. Mech. Phys. Solids 32, 167–196 (1984).

    Article 
    MATH 

    Google Scholar
     

  • Daub, E. G. & Carlson, J. M. A constitutive model for fault gouge deformation in dynamic rupture simulations. J. Geophys. Res. Solid Earth 113, 2007JB005377 (2008).

    Article 
    MATH 

    Google Scholar
     

  • Rubino, V., Rosakis, A. J. & Lapusta, N. Full-field ultrahigh-speed quantification of dynamic shear ruptures using digital image correlation. Exp. Mech. 59, 551–582 (2019).

    Article 
    MATH 

    Google Scholar
     

  • Sutton, M. A., Orteu, J.-J. & Schreier, H. W. Image Correlation for Shape, Motion and Deformation Measurements (Springer, 2009).

  • Beeler, N. M., Tullis, T. E. & Weeks, J. D. The roles of time and displacement in the evolution effect in rock friction. Geophys. Res. Lett. 21, 1987–1990 (1994).

    Article 
    MATH 

    Google Scholar
     

  • Barbot, S., Lapusta, N. & Avouac, J.-P. Under the hood of the earthquake machine: toward predictive modeling of the seismic cycle. Science 336, 707–710 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Lacroix, P., Handwerger, A. L. & Bièvre, G. Life and death of slow-moving landslides. Nat. Rev. Earth Environ. 1, 404–419 (2020).

    Article 
    MATH 

    Google Scholar
     

  • Dempsey, D. & Suckale, J. Physics-based forecasting of induced seismicity at Groningen gas field, the Netherlands. Geophys. Res. Lett. 44, 7773–7782 (2017).

    Article 
    MATH 

    Google Scholar
     

  • Ida, Y. Cohesive force across the tip of a longitudinal-shear crack and Griffith’s specific surface energy. J. Geophys. Res. 77, 3796–3805 (1972).

    Article 
    MATH 

    Google Scholar
     

  • Palmer, A. C. & Rice, J. R. The growth of slip surfaces in the progressive failure of over-consolidated clay. Proc. R. Soc. Lond. A 332, 527–548 (1973).

    Article 
    MATH 

    Google Scholar
     

  • Freund, L. B. Dynamic Fracture Mechanics (Cambridge Univ. Press, 1990).

  • Ohnaka, M. A constitutive scaling law and a unified comprehension for frictional slip failure, shear fracture of intact rock, and earthquake rupture. J. Geophys. Res. 108, 2000JB000123 (2003).

    Article 
    MATH 

    Google Scholar
     

  • Xia, K., Rosakis, A. J. & Kanamori, H. Laboratory Earthquakes: the sub-Rayleigh-to-supershear rupture transition. Science 303, 1859–1861 (2004).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Nakatani, M. Conceptual and physical clarification of rate and state friction: frictional sliding as a thermally activated rheology. J. Geophys. Res 106, 13347–13380 (2001).

    Article 
    MATH 

    Google Scholar
     

  • Marone, C. J., Scholtz, C. H. & Bilham, R. On the mechanics of earthquake afterslip. J. Geophys. Res. Solid Earth 96, 8441–8452 (1991).

    Article 
    MATH 

    Google Scholar
     

  • Bürgmann, R. et al. Earthquake potential along the Northern Hayward Fault, California. Science 289, 1178–1182 (2000).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Perfettini, H. et al. Seismic and aseismic slip on the Central Peru megathrust. Nature 465, 78–81 (2010).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Lu, X., Lapusta, N. & Rosakis, A. J. Pulse-like and crack-like ruptures in experiments mimicking crustal earthquakes. Proc. Natl Acad. Sci. USA 104, 18931–18936 (2007).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Gori, M., Rubino, V., Rosakis, A. J. & Lapusta, N. Dynamic rupture initiation and propagation in a fluid-injection laboratory setup with diagnostics across multiple temporal scales. Proc. Natl Acad. Sci. USA 118, e2023433118 (2021).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Rubino, V., Lapusta, N. & Rosakis, A. J. Intermittent lab earthquakes in dynamically weakening fault gouge. Nature 606, 922–929 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Shearer, P. M. Introduction to Seismology (Cambridge Univ. Press, 2019).

  • Chester, F. M. & Chester, J. S. Ultracataclasite structure and friction processes of the Punchbowl fault, San Andreas system, California. Tectonophysics 295, 199–221 (1998).

    Article 
    MATH 

    Google Scholar
     

  • Mello, M. Identifying the unique ground motion signatures of supershear earthquakes: theory and experiments. PhD dissertation (California Institute of Technology, 2012).

  • Mello, M., Bhat, H. S., Rosakis, A. J. & Kanamori, H. Identifying the unique ground motion signatures of supershear earthquakes: theory and experiments. Tectonophysics 493, 297–326 (2010).

    Article 
    MATH 

    Google Scholar
     

  • Rubino, V., Rosakis, A. J. & Lapusta, N. Spatiotemporal properties of sub‐Rayleigh and supershear ruptures inferred from full‐field dynamic imaging of laboratory experiments. J. Geophys. Res. Solid Earth 125, e2019JB018922 (2020).

    Article 
    MATH 

    Google Scholar
     

  • Tal, Y., Rubino, V., Rosakis, A. J. & Lapusta, N. Illuminating the physics of dynamic friction through laboratory earthquakes on thrust faults. Proc. Natl Acad. Sci. USA 117, 21095–21100 (2020).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Lattanzi, A. et al. Uncertainty analysis of dynamic rupture measurements obtained through ultrahigh-speed digital image correlation. Exp. Mech. 63, 529–563 (2023).

    Article 
    MATH 

    Google Scholar
     

  • Tullis, T. E. & Weeks, J. D. Constitutive behavior and stability of frictional sliding of granite. Pure Appl. Geophys. 124, 383–414 (1986).

    Article 
    MATH 

    Google Scholar
     

  • Blanpied, M. L., Lockner, D. A. & Byerlee, J. D. Frictional slip of granite at hydrothermal conditions. J. Geophys. Res. 100, 13045–13064 (1995).

    Article 
    MATH 

    Google Scholar
     

  • Marone, C., Raleigh, C. B. & Scholz, C. H. Frictional behavior and constitutive modeling of simulated fault gouge. J. Geophys. Res. 95, 7007–7025 (1990).

    Article 
    MATH 

    Google Scholar
     

  • Segall, P. & Rice, J. R. Dilatancy, compaction, and slip instability of a fluid‐infiltrated fault. J. Geophys. Res. 100, 22155–22171 (1995).

    Article 
    MATH 

    Google Scholar
     

  • Hulikal, S., Lapusta, N. & Bhattacharya, K. Static and sliding contact of rough surfaces: effect of asperity-scale properties and long-range elastic interactions. J. Mech. Phys. Solids 116, 217–238 (2018).

    Article 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Dieterich, J. H. & Kilgore, B. D. Direct observation of frictional contacts: new insights for state-dependent properties. Pure Appl. Geophys. 143, 283–302 (1994).

    Article 
    MATH 

    Google Scholar
     

  • Berthoud, P., Baumberger, T., G’Sell, C. & Hiver, J.-M. Physical analysis of the state- and rate-dependent friction law: static friction. Phys. Rev. B 59, 14313–14327 (1999).

    Article 

    Google Scholar
     

  • Ben-David, O., Rubinstein, S. M. & Fineberg, J. Slip-stick and the evolution of frictional strength. Nature 463, 76–79 (2010).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Ikari, M. J., Carpenter, B. M. & Marone, C. A microphysical interpretation of rate‐ and state‐dependent friction for fault gouge. Geochem. Geophys. Geosyst. 17, 1660–1677 (2016).

    Article 

    Google Scholar
     

  • Perfettini, H. & Molinari, A. A micromechanical model of rate and state friction: 1. Static and dynamic sliding. J. Geophys. Res. Solid Earth 122, 2590–2637 (2017).

    Article 
    MATH 

    Google Scholar
     

  • Li, Q., Tullis, T. E., Goldsby, D. & Carpick, R. W. Frictional ageing from interfacial bonding and the origins of rate and state friction. Nature 480, 233–236 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Dieterich, J. H. in Mechanical Behavior of Crustal Rocks: The Handin Volume Geophysical Monograph Series, Vol. 24 (eds Carter, N. L. et al.) 103–120 (American Geophysical Union, 1981).

  • Stesky, R. M. Rock friction-effect of confining pressure, temperature, and pore pressure. Pure Appl. Geophys. 116, 690–704 (1978).

    Article 
    MATH 

    Google Scholar
     

  • Brechet, Y. & Estrin, Y. The effect of strain rate sensitivity on dynamic friction of metals. Scr. Metall. Mater. 30, 1449–1454 (1994).

    Article 
    MATH 

    Google Scholar
     

  • Chester, F. M. Effects of temperature on friction: constitutive equations and experiments with quartz gouge. J. Geophys. Res. 99, 7247–7261 (1994).

    Article 
    MATH 

    Google Scholar
     

  • Heslot, F., Baumberger, T., Perrin, B., Caroli, B. & Caroli, C. Creep, stick-slip, and dry-friction dynamics: experiments and a heuristic model. Phys. Rev. E 49, 4973–4988 (1994).

    Article 
    MATH 

    Google Scholar
     

  • Sleep, N. H. Application of a unified rate and state friction theory to the mechanics of fault zones with strain localization. J. Geophys. Res. 102, 2875–2895 (1997).

    Article 
    MATH 

    Google Scholar
     

  • Baumberger, T. Contact dynamics and friction at a solid-solid interface: material versus statistical aspects. Solid State Commun. 102, 175–185 (1997).

    Article 
    MATH 

    Google Scholar
     

  • Persson, B. N. J. On the theory of rubber friction. Surf. Sci. 401, 445–454 (1998).

    Article 
    MATH 

    Google Scholar
     

  • Perfettini, H. & Avouac, J.-P. Postseismic relaxation driven by brittle creep: a possible mechanism to reconcile geodetic measurements and the decay rate of aftershocks, application to the Chi-Chi earthquake, Taiwan. J. Geophys. Res. 109, B02304 (2004).


    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments