Thursday, October 10, 2024
No menu items!
HomeNatureSingle-neuron representations of odours in the human brain

Single-neuron representations of odours in the human brain

  • Gottfried, J. A. Central mechanisms of odour object perception. Nat. Rev. Neurosci. 11, 628–641 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McGann, J. P. Poor human olfaction is a 19th-century myth. Science 356, eaam7263 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buck, L. & Axel, R. A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65, 175–187 (1991).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Murthy, V. N. Olfactory maps in the brain. Annu. Rev. Neurosci. 34, 233–258 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wilson, D. A., Chapuis, J. & Sullivan, R. M. in Handbook of Olfaction and Gustation Ch. 10 (ed. Doty, R.) 209–224 (John Wiley & Sons, 2015); https://doi.org/10.1002/9781118971758.ch10.

  • Gretenkord, S. et al. Coordinated electrical activity in the olfactory bulb gates the oscillatory entrainment of entorhinal networks in neonatal mice. PLOS Biol. 17, e2006994 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sosulski, D. L., Bloom, M. L., Cutforth, T., Axel, R. & Datta, S. R. Distinct representations of olfactory information in different cortical centres. Nature 472, 213–216 (2011).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Echevarria-Cooper, S. L. et al. Mapping the microstructure and striae of the human olfactory tract with diffusion MRI. J. Neurosci. 42, 58–68 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bekkers, J. M. & Suzuki, N. Neurons and circuits for odor processing in the piriform cortex. Trends Neurosci. 36, 429–438 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stettler, D. D. & Axel, R. Representations of odor in the piriform cortex. Neuron 63, 854–864 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Howard, J. D., Plailly, J., Grueschow, M., Haynes, J.-D. & Gottfried, J. A. Odor quality coding and categorization in human posterior piriform cortex. Nat. Neurosci. 12, 932–938 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gottfried, J. A., Winston, J. S. & Dolan, R. J. Dissociable codes of odor quality and odorant structure in human piriform cortex. Neuron 49, 467–479 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Poellinger, A. et al. Activation and habituation in olfaction—an fMRI study. NeuroImage 13, 547–560 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang, H. et al. Theta oscillations rapidly convey odor-specific content in human piriform cortex. Neuron 94, 207–219 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Poo, C., Agarwal, G., Bonacchi, N. & Mainen, Z. F. Spatial maps in piriform cortex during olfactory navigation. Nature 601, 595–599 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Poo, C. & Isaacson, J. S. Odor representations in olfactory cortex: “sparse” coding, global inhibition, and oscillations. Neuron 62, 850–861 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhan, C. & Luo, M. Diverse patterns of odor representation by neurons in the anterior piriform cortex of awake mice. J. Neurosci. 30, 16662–16672 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roland, B., Deneux, T., Franks, K. M., Bathellier, B. & Fleischmann, A. Odor identity coding by distributed ensembles of neurons in the mouse olfactory cortex. eLife 6, e26337 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Blazing, R. M. & Franks, K. M. Odor coding in piriform cortex: mechanistic insights into distributed coding. Curr. Opin. Neurobiol. 64, 96–102 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pashkovski, S. L. et al. Structure and flexibility in cortical representations of odour space. Nature 583, 253–258 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haddad, R. et al. Olfactory cortical neurons read out a relative time code in the olfactory bulb. Nat. Neurosci. 16, 949–957 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, W. & Wilson, D. A. Odor-evoked activity in the mouse lateral entorhinal cortex. Neuroscience 223, 12–20 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cain, D. P. & Bindra, D. Responses of amygdala single units to odors in the rat. Exp. Neurol. 35, 98–110 (1972).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kupers, R. et al. Neural correlates of olfactory processing in congenital blindness. Neuropsychologia 49, 2037–2044 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kjelvik, G., Evensmoen, H. R., Brezova, V. & HÃ¥berg, A. K. The human brain representation of odor identification. J. Neurophysiol. 108, 645–657 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Bitterman, Y., Mukamel, R., Malach, R., Fried, I. & Nelken, I. Ultra-fine frequency tuning revealed in single neurons of human auditory cortex. Nature 451, 197–201 (2008).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reber, T. P. et al. Representation of abstract semantic knowledge in populations of human single neurons in the medial temporal lobe. PLOS Biol. 17, e3000290 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rutishauser, U., Reddy, L., Mormann, F. & Sarnthein, J. The architecture of human memory: insights from human single-neuron recordings. J. Neurosci. 41, 883–890 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Halgren, E., Babb, T. L., Rausch, R. & Crandall, P. H. Neurons in the human basolateral amygdala and hippocampal formation do not respond to odors. Neurosci. Lett. 4, 331–335 (1977).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fontanini, A., Spano, P. & Bower, J. M. Ketamine-xylazine-induced slow (<1.5 Hz) oscillations in the rat piriform (olfactory) cortex are functionally correlated with respiration. J. Neurosci. 23, 7993–8001 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sobel, N. et al. Sniffing and smelling: separate subsystems in the human olfactory cortex. Nature 392, 282–286 (1998).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zelano, C. et al. Nasal respiration entrains human limbic oscillations and modulates cognitive function. J. Neurosci. 36, 12448–12467 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meyers, E. The neural decoding toolbox. Front. Neuroinformatics 7, 8 (2013).

  • Vinje, W. E. & Gallant, J. L. Sparse coding and decorrelation in primary visual cortex during natural vision. Science 287, 1273–1276 (2000).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Pedreira, C., Martinez, J., Ison, M. J. & Quian Quiroga, R. How many neurons can we see with current spike sorting algorithms? J. Neurosci. Methods 211, 58–65 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lindquist, K. A., Satpute, A. B., Wager, T. D., Weber, J. & Barrett, L. F. The brain basis of positive and negative affect: evidence from a meta-analysis of the human neuroimaging literature. Cereb. Cortex 26, 1910–1922 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Winston, J. S., Gottfried, J. A., Kilner, J. M. & Dolan, R. J. Integrated neural representations of odor intensity and affective valence in human amygdala. J. Neurosci. 25, 8903–8907 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pignatelli, M. & Beyeler, A. Valence coding in amygdala circuits. Curr. Opin. Behav. Sci. 26, 97–106 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Toet, A. et al. The relation between valence and arousal in subjective odor experience. Chemosens. Percept. 13, 141–151 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Eichenbaum, H., Morton, T. H., Potter, H. & Corkin, S. Selective olfactory deficits in case H.M. Brain 106, 459–472 (1983).

    Article 
    PubMed 

    Google Scholar
     

  • Quiroga, R. Q., Reddy, L., Kreiman, G., Koch, C. & Fried, I. Invariant visual representation by single neurons in the human brain. Nature 435, 1102–1107 (2005).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Quiroga, R. Q., Kraskov, A., Koch, C. & Fried, I. Explicit encoding of multimodal percepts by single neurons in the human brain. Curr. Biol. 19, 1308–1313 (2009).

    Article 
    PubMed Central 

    Google Scholar
     

  • Mignot, C., Schunke, A., Sinding, C. & Hummel, T. Olfactory adaptation: recordings from the human olfactory epithelium. Eur. Arch. Otorhinolaryngol. 279, 3503–3510 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Wilson, D. A. Habituation of odor responses in the rat anterior piriform cortex. J. Neurophysiol. 79, 1425–1440 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sobel, N. et al. Time course of odorant-induced activation in the human primary olfactory cortex. J. Neurophysiol. 83, 537–551 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pedreira, C. et al. Responses of human medial temporal lobe neurons are modulated by stimulus repetition. J. Neurophysiol. 103, 97–107 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Jacobson, G. A., Rupprecht, P. & Friedrich, R. W. Experience-dependent plasticity of odor representations in the telencephalon of zebrafish. Curr. Biol. 28, 1–14 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Franks, K. M. et al. Recurrent circuitry dynamically shapes the activation of piriform cortex. Neuron 72, 49–56 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Iravani, B., Arshamian, A., Ohla, K., Wilson, D. A. & Lundström, J. N. Non-invasive recording from the human olfactory bulb. Nat. Commun. 11, 648 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Garavan, H., Pendergrass, J. C., Ross, T. J., Stein, E. A. & Risinger, R. C. Amygdala response to both positively and negatively valenced stimuli. NeuroReport 12, 2779 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jin, J., Zelano, C., Gottfried, J. A. & Mohanty, A. Human amygdala represents the complete spectrum of subjective valence. J. Neurosci. 35, 15145–15156 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Anderson, A. K. et al. Dissociated neural representations of intensity and valence in human olfaction. Nat. Neurosci. 6, 196–202 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Doty, R. L. Olfactory dysfunction in neurodegenerative diseases: is there a common pathological substrate? Lancet Neurol. 16, 478–488 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Poo, C. & Isaacson, J. S. A major role for intracortical circuits in the strength and tuning of odor-evoked excitation in olfactory cortex. Neuron 72, 41–48 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mandairon, N. et al. Context-driven activation of odor representations in the absence of olfactory stimuli in the olfactory bulb and piriform cortex. Front. Behav. Neurosci. 8, 138 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schulze, P., Bestgen, A.-K., Lech, R. K., Kuchinke, L. & Suchan, B. Preprocessing of emotional visual information in the human piriform cortex. Sci. Rep. 7, 9191 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Djordjevic, J. et al. A rose by any other name: would it smell as sweet? J. Neurophysiol. 99, 386–393 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Bensafi, M. et al. Olfactomotor activity during imagery mimics that during perception. Nat. Neurosci. 6, 1142–1144 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Herz, R. S. Verbal coding in olfactory versus nonolfactory cognition. Mem. Cognit. 28, 957–964 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Young, B. D. Olfactory imagery: is exactly what it smells like. Philos. Stud. 177, 3303–3327 (2020).

    Article 

    Google Scholar
     

  • Topalovic, U. et al. A wearable platform for closed-loop stimulation and recording of single-neuron and local field potential activity in freely moving humans. Nat. Neurosci. 26, 517–527 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tay, A. S.-M. S., Caravan, B. & Mamelak, A. N. in Intracranial EEG: A Guide for Cognitive Neuroscientists (ed. Axmacher, N.) 671–682 (Springer, 2023); https://doi.org/10.1007/978-3-031-20910-9_42.

  • Niediek, J., Boström, J., Elger, C. E. & Mormann, F. Reliable analysis of single-unit recordings from the human brain under noisy conditions: tracking neurons over hours. PLoS ONE 11, e0166598 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dehnen, G. et al. Duplicate detection of spike events: a relevant problem in human single-unit recordings. Brain Sci. 11, 761 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Davis, T. S. et al. LeGUI: a fast and accurate graphical user interface for automated detection and anatomical localization of intracranial electrodes. Front. Neurosci. 15, 769872 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oostenveld, R., Fries, P., Maris, E. & Schoffelen, J.-M. FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput. Intell. Neurosci. 2011, 156869 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Noto, T., Zhou, G., Schuele, S., Templer, J. & Zelano, C. Automated analysis of breathing waveforms using BreathMetrics: a respiratory signal processing toolbox. Chem. Senses 43, 583–597 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tiihonen, M., Jacobsen, T., Haumann, N. T., Saarikallio, S. & Brattico, E. I know what I like when I see it: likability is distinct from pleasantness since early stages of multimodal emotion evaluation. PLoS ONE 17, e0274556 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shuman, V., Sander, D. & Scherer, K. Levels of Valence. Front. Psychol. 4, (2013).

  • Brainard, D. H. The Psychophysics Toolbox. Spat. Vis. 10, 433–436 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pelli, D. G. The VideoToolbox software for visual psychophysics: transforming numbers into movies. Spat. Vis. 10, 437–442 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kleiner, M. et al. What’s new in psychtoolbox-3. Perception 36, 1–16 (2007).


    Google Scholar
     

  • Mormann, F. et al. Latency and selectivity of single neurons indicate hierarchical processing in the human medial temporal lobe. J. Neurosci. 28, 8865–8872 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reber, T. P. et al. Single-neuron mechanisms of neural adaptation in the human temporal lobe. Nat. Commun. 14, 2496 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rolls, E. T. & Tovee, M. J. Sparseness of the neuronal representation of stimuli in the primate temporal visual cortex. J. Neurophysiol. 73, 713–726 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Treves, A. & Rolls, E. T. What determines the capacity of autoassociative memories in the brain? Netw. Comput. Neural Syst. 2, 371–397 (1991).

    Article 

    Google Scholar
     

  • Aarts, E., Verhage, M., Veenvliet, J. V., Dolan, C. V. & van der Sluis, S. A solution to dependency: using multilevel analysis to accommodate nested data. Nat. Neurosci. 17, 491–496 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barr, D. J., Levy, R., Scheepers, C. & Tily, H. J. Random effects structure for confirmatory hypothesis testing: keep it maximal. J. Mem. Lang. 68, 255–278 (2013).

    Article 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments