Friday, November 14, 2025
No menu items!
HomeNatureSilicon solar cells with hybrid back contacts

Silicon solar cells with hybrid back contacts

  • Haegel, N. M. et al. Terawatt-scale photovoltaics: transform global energy. Science 364, 836–838 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, Z. Prospects of photovoltaic technology. Engineering 21, 28–31 (2023).

    Article 

    Google Scholar
     

  • Allen, T. G. et al. Passivating contacts for crystalline silicon solar cells. Nat. Energy 4, 914–928 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Richter, A., Hermle, M. & Glunz, S. W. Reassessment of the limiting efficiency for crystalline silicon solar cells. IEEE J. Photovolt. 3, 1184–1191 (2013).

    Article 

    Google Scholar
     

  • Green, M. A. et al. Solar cell efficiency tables (version 66). Prog. Photovolt. Res. Appl. 33, 795–810 (2025).

    Article 

    Google Scholar
     

  • Blankenship, R. E. et al. Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science 332, 805–809 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Graus, W. H. J., Voogt, M. & Worrell, E. International comparison of energy efficiency of fossil power generation. Energy Policy 35, 3936–3951 (2007).

    Article 

    Google Scholar
     

  • Green, M. A. Solar cell fill factors: general graph and empirical expressions. Solid State Electron. 24, 788–789 (1981).

    Article 
    CAS 

    Google Scholar
     

  • Serenelli, L. et al. Selective contacts and fill factor limitations in heterojunction solar cells. Prog. Photovolt. Res. Appl. 29, 876–884 (2021).

    Article 

    Google Scholar
     

  • Brendel, R. & Peibst, R. Contact selectivity and efficiency in crystalline silicon photovoltaics. IEEE J. Photovolt. 6, 1413–1420 (2016).

    Article 

    Google Scholar
     

  • Shockley, W. The theory of p–n junctions in semiconductors and p–n junction transistors. Bell Syst. Tech. J. 28, 435–489 (1949).

    Article 

    Google Scholar
     

  • Lin, H. et al. Silicon heterojunction solar cells with up to 26.81% efficiency achieved by electrically optimized nanocrystalline-silicon hole contact layers. Nat. Energy 8, 789–799 (2023).

    Article 
    CAS 

    Google Scholar
     

  • McIntosh, K. Lumps, Humps and Bumps: Three Detrimental Effects in the Current–Voltage Curve of Silicon Solar Cells. PhD thesis, Univ. New South Wales, Sydney (2001).

  • Babbe, F., Choubrac, L. & Siebentritt, S. The optical diode ideality factor enables fast screening of semiconductors for solar cells. Sol. RRL 2, 1800248 (2018).

    Article 

    Google Scholar
     

  • Wietler, T. F. et al. Pinhole density and contact resistivity of carrier selective junctions with polycrystalline silicon on oxide. Appl. Phys. Lett. 110, 253902 (2017).

    Article 

    Google Scholar
     

  • Diggs, A. et al. Pinhole formation by nucleation-driven phase separation in TOPCon and POLO solar cells: structural dynamics and optimization. ACS Appl. Energy Mater. 7, 3414–3423 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Yoshikawa, K. et al. Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nat. Energy 2, 17032 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Tang, H. et al. Understanding localized current leakage in silicon-based heterojunction solar cells. Prog. Photovolt. Res. Appl. 33, 522–530 (2024).

    Article 

    Google Scholar
     

  • Hamedani, Y. et al. in Chemical Vapor Deposition—Recent Advances and Applications in Optical, Solar Cells and Solid State Devices (ed. Sudheer N.) Ch. 10 (Intech Open Access, 2016).

  • Kanevce, A. & Metzger, W. K. The role of amorphous silicon and tunneling in heterojunction with intrinsic thin layer (HIT) solar cells. J. Appl. Phys. 105, 094507 (2009).

    Article 

    Google Scholar
     

  • Wu, H. et al. Silicon heterojunction back-contact solar cells by laser patterning. Nature 635, 604–609 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chichkov, B. N. et al. Femtosecond, picosecond and nanosecond laser ablation of solids. Appl. Phys. A 63, 109–115 (1996).

    Article 

    Google Scholar
     

  • Procel, P. et al. The role of heterointerfaces and subgap energy states on transport mechanisms in silicon heterojunction solar cells. Prog. Photovolt. Res. Appl. 28, 935–945 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Qu, X. et al. Identification of embedded nanotwins at c-Si/a-Si:H interface limiting the performance of high-efficiency silicon heterojunction solar cells. Nat. Energy 6, 194–202 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Narayan, J., Young, R. T., Wood, R. F. & Christie, W. H. p–n junction formation in boron-deposited silicon by laser-induced diffusion. Appl. Phys. Lett. 33, 338–340 (1978).

    Article 
    CAS 

    Google Scholar
     

  • Young, R. T., Narayan, J. & Wood, R. F. Electrical and structural characteristics of laser-induced epitaxial layers in silicon. Appl. Phys. Lett. 35, 447–449 (1979).

    Article 
    CAS 

    Google Scholar
     

  • Köhler, M. et al. A silicon carbide-based highly transparent passivating contact for crystalline silicon solar cells approaching efficiencies of 24%. Nat. Energy 6, 529–537 (2021).

    Article 

    Google Scholar
     

  • Ru, X. et al. Silicon heterojunction solar cells achieving 26.6% efficiency on commercial-size p-type silicon wafer. Joule 8, 1092–1104 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Green, M. A. The path to 25% silicon solar cell efficiency: History of silicon cell evolution. Prog. Photovolt. Res. Appl. 17, 183–189 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Feldmann, F. et al. Passivated rear contacts for high-efficiency n-type Si solar cells providing high interface passivation quality and excellent transport characteristics. Sol. Energy Mater. Sol. Cells 120, 270–274 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Su, Q. et al. Theoretical limiting-efficiency assessment on advanced crystalline silicon solar cells with Auger ideality factor and wafer thickness modifications. Prog. Photovolt. Res. Appl. 32, 587–598 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Cuevas, A. et al. Carrier population control and surface passivation in solar cells. Sol. Energy Mater. Sol. Cells 184, 38–47 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Aberle, A. G. Surface passivation of crystalline silicon solar cells: a review. Prog. Photovolt. Res. Appl. 8, 473–487 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Schmidt, J., Peibst, R. & Brendel, R. Surface passivation of crystalline silicon solar cells: present and future. Sol. Energy Mater. Sol. Cells 187, 39–54 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Hoex, B. et al. Ultralow surface recombination of c-Si substrates passivated by plasma-assisted atomic layer deposited Al2O3. Appl. Phys. Lett. 89, 042112 (2006).

    Article 

    Google Scholar
     

  • Wang, G. et al. 27.09%-efficiency silicon heterojunction back contact solar cell and going beyond. Nat. Commun. 15, 8931 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments