Thursday, January 30, 2025
No menu items!
HomeNatureSignatures of longitudinal spin pumping in a magnetic phase transition

Signatures of longitudinal spin pumping in a magnetic phase transition

  • Citro, R. & Aidelsburger, M. Thouless pumping and topology. Nat. Rev. Phys. 5, 87–101 (2023).

    Article 

    Google Scholar
     

  • Laughlin, R. B. Quantized Hall conductivity in two dimensions. Phys. Rev. B 23, 5632(R) (1981).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Kawamura, M. et al. Laughlin charge pumping in a quantum anomalous Hall insulator. Nat. Phys. 19, 333–337 (2023).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Tserkovnyak, Y., Brataas, A. & Bauer, G. E. W. Enhanced Gilbert damping in thin ferromagnetic films. Phys. Rev. Lett. 88, 117601 (2002).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Šimánek, E. Gilbert damping in ferromagnetic films due to adjacent normal-metal layers. Phys. Rev. B 68, 224403 (2003).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Mizukami, S., Ando, Y. & Miyazaki, T. Ferromagnetic resonance linewidth for NM/80NiFe/NM films (NM=Cu, Ta, Pd and Pt). J. Magn. Magn. Mater. 226, 1640–1642 (2001).

    Article 
    ADS 

    Google Scholar
     

  • Urban, R., Woltersdorf, G. & Heinrich, B. Gilbert damping in single and multilayer ultrathin films: role of interfaces in nonlocal spin dynamics. Phys. Rev. Lett. 87, 217204 (2001).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Beaurepaire, E., Merle, J.-C., Daunois, A. & Bigot, J.-Y. Ultrafast spin dynamics in ferromagnetic nickel. Phys. Rev. Lett. 76, 4250–4253 (1996).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hayashi, H., Go, D., Haku, S., Mokrousov, Y. & Ando, K. Observation of orbital pumping. Nat. Electron. 7, 646–652 (2024).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Han, S. et al. Orbital pumping incorporating both orbital angular momentum and position. Preprint at https://arxiv.org/abs/2311.00362 (2023).

  • Zholud, A., Freeman, R., Cao, R., Srivastava, A. & Urazhdin, S. Spin transfer due to quantum magnetization fluctuations. Phys. Rev. Lett. 119, 257201 (2017).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Mitrofanov, A. & Urazhdin, S. Nonclassical spin transfer effects in an antiferromagnet. Phys. Rev. Lett. 126, 037203 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Petrović, M. D., Mondal, P., Feiguin, A. E. & Nikolić, B. K. Quantum spin torque driven transmutation of an antiferromagnetic Mott insulator. Phys. Rev. Lett. 126, 197202 (2021).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Slonczewski, J. C. Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, L1–L7 (1996).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Berger, L. Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B 54, 9353–9358 (1996).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Saitoh, E., Ueda, M., Miyajima, H. & Tatara, G. Conversion of spin current into charge current at room temperature: inverse spin-Hall effect. Appl. Phys. Lett. 88, 182509 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Mosendz, O. et al. Detection and quantification of inverse spin Hall effect from spin pumping in permalloy/normal metal bilayers. Phys. Rev. B 82, 214403 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Nakayama, H. et al. Geometry dependence on inverse spin Hall effect induced by spin pumping in Ni81Fe19/Pt films. Phys. Rev. B 85, 144408 (2012).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Wang, H. L. et al. Scaling of spin Hall angle in 3d, 4d, and 5d metals from Y3Fe5O12/metal spin pumping. Phys. Rev. Lett. 112, 197201 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Uchida, K. et al. Observation of the spin Seebeck effect. Nature 455, 778–781 (2008).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Fallot, M. Les alliages du fer avec les métaux de la famille du platine. Ann. Phys. 11, 291–332 (1938).

    Article 

    Google Scholar
     

  • Maat, S., Thiele, J.-U. & Fullerton, E. E. Temperature and field hysteresis of the antiferromagnetic-to-ferromagnetic phase transition in epitaxial FeRh films. Phys. Rev. B 72, 214432 (2005).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Barker, J. & Chantrell, R. W. Higher-order exchange interactions leading to metamagnetism in FeRh. Phys. Rev. B 92, 094402 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Stamm, C. et al. Antiferromagnetic-ferromagnetic phase transition in FeRh probed by X-ray magnetic circular dichroism. Phys. Rev. B 77, 184401 (2008).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Koenig, C. Self-consistent band structure of paramagnetic, ferromagnetic and antiferromagnetic ordered FeRh. J. Phys. F 12, 1123 (1982).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Sandratskii, L. M. & Mavropoulos, P. Magnetic excitations and femtomagnetism of FeRh: a first-principles study. Phys. Rev. B 83, 174408 (2011).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Kouvel, J. S. & Hartelius, C. C. Anomalous magnetic moments and transformations in the ordered alloy FeRh. J. Appl. Phys. 33, 1343 (1962).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Wang, Y. et al. Spin pumping during the antiferromagnetic–ferromagnetic phase transition of iron–rhodium. Nat. Commun. 11, 275 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Nan, T. et al. Electric-field control of spin dynamics during magnetic phase transitions. Sci. Adv. 6, eabd2613 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Marti, X. et al. Room-temperature antiferromagnetic memory resistor. Nat. Mater. 13, 367–374 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Kovalev, A. A., Bauer, G. E. W. & Brataas, A. Perpendicular spin valves with ultrathin ferromagnetic layers: magnetoelectronic circuit investigation of finite-size effects. Phys. Rev. B 73, 054407 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Bass, J. & Pratt, W. P. Spin-diffusion lengths in metals and alloys, and spin-flipping at metal/metal interfaces: an experimentalist’s critical review. J. Phys. Condens. Matter 19, 183201 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Grazhdankina, N. P. Magnetic first order phase transitions. Sov. Phys. Usp. 11, 727–745 (1969).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Fruchart, D. & Bertaut, E. F. Magnetic studies of the metallic perovskite-type compounds of manganese. J. Phys. Soc. Jpn 44, 781–791 (1978).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Atxitia, U. et al. Micromagnetic modeling of laser-induced magnetization dynamics using the Landau-Lifshitz-Bloch equation. Appl. Phys. Lett. 91, 232507 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Carpene, E., Hedayat, H., Boschini, F. & Dallera, C. Ultrafast demagnetization of metals: collapsed exchange versus collective excitations. Phys. Rev. B 91, 174414 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Koopmans, B. et al. Explaining the paradoxical diversity of ultrafast laser-induced demagnetization. Nat. Mater. 9, 259–265 (2010).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Battiato, M., Carva, K. & Oppeneer, P. M. Superdiffusive spin transport as a mechanism of ultrafast demagnetization. Phys. Rev. Lett. 105, 027203 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mueller, B. Y. et al. Feedback effect during ultrafast demagnetization dynamics in ferromagnets. Phys. Rev. Lett. 111, 167204 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Turgut, E. et al. Stoner vs. Heisenberg: ultrafast exchange reduction and magnon generation during laser-induced demagnetization. Phys. Rev. B 94, 220408(R) (2016).

    Article 
    ADS 

    Google Scholar
     

  • Go, D. & Lee, H.-W. Orbital torque: torque generation by orbital current injection. Phys. Rev. Res. 2, 013177 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Lee, D. et al. Orbital torque in magnetic bilayers. Nat. Commun. 12, 6710 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Sala, G. & Gambardella, P. Giant orbital Hall effect and orbital-to-spin conversion in 3d, 5d, and 4f metallic heterostructures. Phys. Rev. Res. 4, 033037 (2022).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Bruno, P. Tight-binding approach to the orbital magnetic moment and magnetocrystalline anisotropy of transition-metal monolayers. Phys. Rev. B 39, 865(R) (1989).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, L. & Niu, Q. Angular momentum of phonons and the Einstein–de Haas effect. Phys. Rev. Lett. 112, 085503 (2014).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Holanda, J., Maior, D. S., Azevedo, A. & Rezende, S. M. Detecting the phonon spin in magnon–phonon conversion experiments. Nat. Phys. 14, 500–506 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Hamada, M., Minamitani, E., Hirayama, M. & Murakami, S. Phonon angular momentum induced by the temperature gradient. Phys. Rev. Lett. 121, 175301 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Streib, S., Keshtgar, H. & Bauer, G. E. W. Damping of magnetization dynamics by phonon pumping. Phys. Rev. Lett. 121, 027202 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Schlitz, R. et al. Magnetization dynamics affected by phonon pumping. Phys. Rev. B 106, 014407 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ishito, K. et al. Truly chiral phonons in α-HgS. Nat. Phys. 19, 35–39 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Chen, K. & Zhang, S. Spin pumping in the presence of spin–orbit coupling. Phys. Rev. Lett. 114, 126602 (2015).

    Article 
    ADS 
    PubMed 
    MATH 

    Google Scholar
     

  • Yu, C. Q. et al. Thickness-dependent magnetic order and phase-transition dynamics in epitaxial Fe-rich FeRh thin films. Phys. Lett. A 383, 2424 (2019).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Wang, Y., Deorani, P., Qiu, X., Kwon, J. H. & Yang, H. Determination of intrinsic spin Hall angle in Pt. Appl. Phys. Lett. 105, 152412 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Stamm, C. et al. Magneto-optical detection of the spin Hall effect in Pt and W thin films. Phys. Rev. Lett. 119, 087203 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Wang, L. et al. Giant room temperature interface spin Hall and inverse spin Hall effects. Phys. Rev. Lett. 116, 196602 (2016).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Tao, X. et al. Self-consistent determination of spin Hall angle and spin diffusion length in Pt and Pd: the role of the interface spin loss. Sci. Adv. 4, eaat1670 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, J.-S., Vescovo, E., Plucinski, L., Schneider, C. M. & Kao, C.-C. Electronic structure and magnetic properties of epitaxial FeRh(001) ultrathin films on W(100). Phys. Rev. B 82, 224410 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Núñez, A. S., Duine, R. A., Haney, P. & MacDonald, A. H. Theory of spin torques and giant magnetoresistance in antiferromagnetic metals. Phys. Rev. B 73, 214426 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Yu, J. et al. Long spin coherence length and bulk-like spin–orbit torque in ferrimagnetic multilayers. Nat. Mater. 18, 29–34 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Slater, J. C. & Koster, G. F. Simplified LCAO method for the periodic potential problem. Phys. Rev. 94, 1498–1524 (1954).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Luisier, M., Schenk, A., Fichtner, W. & Klimeck, G. Atomistic simulation of nanowires in the sp3d5s* tight-binding formalism: from boundary conditions to strain calculations. Phys. Rev. B 74, 205323 (2006).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments