Thursday, February 5, 2026
No menu items!
HomeNatureSignatures of fractional charges via anyon–trions in twisted MoTe2

Signatures of fractional charges via anyon–trions in twisted MoTe2

  • Halperin, B. I. & Jain, J. K. (eds) Fractional Quantum Hall Effects: New Developments (World Scientific, 2020).

  • Laughlin, R. B. Anomalous quantum Hall effect: an incompressible quantum fluid with fractionally charged excitations. Phys. Rev. Lett. 50, 1395 (1983).

    Article 
    ADS 

    Google Scholar
     

  • Halperin, B. I. Statistics of quasiparticles and the hierarchy of fractional quantized Hall states. Phys. Rev. Lett. 52, 1583 (1984).

    Article 
    ADS 

    Google Scholar
     

  • Arovas, D., Schrieffer, J. R. & Wilczek, F. Fractional statistics and the quantum Hall effect. Phys. Rev. Lett. 53, 722 (1984).

    Article 
    ADS 

    Google Scholar
     

  • de-Picciotto, R. et al. Direct observation of a fractional charge. Nature 389, 162–164 (1997).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Reznikov, M. et al. Observation of quasiparticles with one-fifth of an electron’s charge. Nature 399, 238–241 (1999).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Dolev, M. et al. Observation of a quarter of an electron charge at the ν = 5/2 quantum Hall state. Nature 452, 829–834 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Goldman, V. J. & Su, B. Resonant tunneling in the quantum Hall regime: measurement of fractional charge. Science 267, 1010–1012 (1995).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Martin, J. et al. Localization of fractionally charged quasi-particles. Science 305, 980–983 (2004).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Banerjee, M. et al. Observation of half-integer thermal Hall conductance. Nature 559, 205–210 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bartolomei, H. et al. Fractional statistics in anyon collisions. Science 368, 173–177 (2020).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, J. Y. M. et al. Partitioning of diluted anyons reveals their braiding statistics. Nature 617, 277–281 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Nakamura, J. et al. Direct observation of anyonic braiding statistics. Nat. Phys. 16, 931–936 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Tang, E., Mei, J.-W. & Wen, X.-G. High-temperature fractional quantum Hall states. Phys. Rev. Lett. 106, 236802 (2011).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Sun, K., Gu, Z., Katsura, H. & Das Sarma, S. Nearly flatbands with nontrivial topology. Phys. Rev. Lett. 106, 236803 (2011).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Neupert, T., Santos, L., Chamon, C. & Mudry, C. Fractional quantum Hall states at zero magnetic field. Phys. Rev. Lett. 106, 236804 (2011).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Sheng, D. N., Gu, Z.-C., Sun, K. & Sheng, L. Fractional quantum Hall effect in the absence of Landau levels. Nat. Commun. 2, 389 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Regnault, N. & Bernevig, B. A. Fractional Chern insulator. Phys. Rev. X 1, 021014 (2011).


    Google Scholar
     

  • Xiao, D., Zhu, W., Ran, Y., Nagaosa, N. & Okamoto, S. Interface engineering of quantum Hall effects in digital transition metal oxide heterostructures. Nat. Commun. 2, 596 (2011).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Park, H. et al. Observation of fractionally quantized anomalous Hall effect. Nature 622, 74–79 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu, Z. et al. Fractional quantum anomalous Hall effect in multilayer graphene. Nature 626, 759–764 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Berkelbach, T. C., Hybertsen, M. S. & Reichman, D. R. Theory of neutral and charged excitons in monolayer transition metal dichalcogenides. Phys. Rev. B 88, 045318 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Wójs, A. & Quinn, J. J. Energy spectra of fractional quantum Hall systems in the presence of a valence hole. Phys. Rev. B 63, 045303 (2000).

    Article 
    ADS 

    Google Scholar
     

  • Byszewski, M. et al. Optical probing of composite fermions in a two-dimensional electron gas. Nat. Phys. 2, 239–243 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Cai, J. et al. Signatures of fractional quantum anomalous Hall states in twisted MoTe2. Nature 622, 63–68 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Anderson, E. et al. Trion sensing of a zero-field composite Fermi liquid. Nature 635, 590–595 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mostaan, N., Goldman, N., İmamoğlu, A. & Grusdt, F. Anyon-trions in atomically thin semiconductor heterostructures. Preprint at https://arxiv.org/abs/2507.08933v2 (2025).

  • Wagner, G. & Neupert, T. Sensing the binding and unbinding of anyons at impurities. Preprint at https://arxiv.org/abs/2507.08928v1 (2025).

  • Anderson, E. et al. Programming correlated magnetic states with gate-controlled moiré geometry. Science 381, 325–330 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • He, Y. M. et al. Single quantum emitters in monolayer semiconductors. Nat. Nanotechnol. 10, 497–502 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Srivastava, A. et al. Optically active quantum dots in monolayer WSe2. Nat. Nanotechnol. 10, 491–496 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chakraborty, C. et al. Voltage-controlled quantum light from an atomically thin semiconductor. Nat. Nanotechnol. 10, 507–511 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Koperski, M. et al. Single photon emitters in exfoliated WSe2 structures. Nat. Nanotechnol. 10, 503–506 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kumar, S., Kaczmarczyk, A. & Gerardot, B. D. Strain-induced spatial and spectral isolation of quantum emitters in mono-and bilayer WSe2. Nano Lett. 15, 7567–7573 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thureja, D. et al. Electrically tunable quantum confinement of neutral excitons. Nature 606, 298–304 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, F. et al. Observation of integer and fractional quantum anomalous Hall effects in twisted bilayer MoTe2. Phys. Rev. X 13, 031037 (2023).

    CAS 

    Google Scholar
     

  • Zeng, Y. et al. Thermodynamic evidence of fractional Chern insulator in moiré MoTe2. Nature 622, 69–73 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ji, Z. et al. Local probe of bulk and edge states in a fractional Chern insulator. Nature 635, 578583 (2024).

    Article 

    Google Scholar
     

  • Redekop, E. et al. Direct magnetic imaging of fractional Chern insulators in twisted MoTe2. Nature 635, 584–589 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Park, H. et al. Ferromagnetism and topology of the higher flat band in a fractional Chern insulator. Nat. Phys. 21, 549–555 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Xu, F. et al. Interplay between topology and correlations in the second moiré band of twisted bilayer MoTe2. Nat. Phys. 21, 542–548 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Jain, J. K. Composite Fermions (Cambridge Univ. Press, 2007).

  • Crépel, V. & Fu, L. Anomalous Hall metal and fractional Chern insulator in twisted transition metal dichalcogenides. Phys. Rev. B 107, L201109 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Anderson, E. et al. Magnetoelectric control of helical light emission in a moiré Chern magnet. Phys. Rev. X 15, 031057 (2025).

    CAS 

    Google Scholar
     

  • Liu, Z., Li, B. & Wu, F. Characterization of fractional Chern insulator quasiparticles in moiré transition metal dichalcogenides. Phys. Rev. B 112, 245104 (2025).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Park, H. et al. Observation of high-temperature dissipationless fractional Chern insulator. Preprint at https://arxiv.org/abs/2503.10989v1 (2025).

  • RELATED ARTICLES

    Most Popular

    Recent Comments