Friday, January 24, 2025
No menu items!
HomeNatureSignature of the western boundary currents in local climate variability

Signature of the western boundary currents in local climate variability

  • Imawaki, S., Bower, A. S., Beal, L. & Qiu, B. in International Geophysics Vol. 103, 305–338 (Elsevier, 2013).

  • Chelton, D. B., Schlax, M. G., Freilich, M. H. & Milliff, R. F. Satellite measurements reveal persistent small-scale features in ocean winds. Science 303, 978–983 (2004).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • O’Neill, L. W., Chelton, D. B., Esbensen, S. K. & Wentz, F. J. High-resolution satellite measurements of the atmospheric boundary layer response to SST variations along the Agulhas return current. J. Clim. 18, 2706–2723 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Minobe, S., Kuwano-Yoshida, A., Komori, N., Xie, S.-P. & Small, R. J. Influence of the Gulf Stream on the troposphere. Nature 452, 206–209 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Minobe, S., Miyashita, M., Kuwano-Yoshida, A., Tokinaga, H. & Xie, S.-P. Atmospheric response to the Gulf Stream: seasonal variations. J. Clim. 23, 3699–3719 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Chelton, D. & Xie, S.-P. Coupled Ocean-Atmosphere Interaction at Oceanic Mesoscales. Oceanography 23, 52–69 (2010).

    Article 

    Google Scholar
     

  • Hoskins, B. J. & Valdes, P. J. On the existence of storm-tracks. J. Atmos. Sci. 47, 1854–1864 (1990).

    Article 
    ADS 

    Google Scholar
     

  • Nakamura, H., Sampe, T., Tanimoto, Y. & Shimpo, A. in Geophysical Monograph Series (eds Wang, C. et al.) 329–345 (American Geophysical Union, 2004).

  • Nakamura, H., Sampe, T., Goto, A., Ohfuchi, W. & Xie, S.-P. On the importance of midlatitude oceanic frontal zones for the mean state and dominant variability in the tropospheric circulation. Geophys. Res. Lett. 35, 2008GL034010 (2008).

    Article 

    Google Scholar
     

  • Woollings, T., Hoskins, B., Blackburn, M., Hassell, D. & Hodges, K. Storm track sensitivity to sea surface temperature resolution in a regional atmosphere model. Clim. Dyn. 35, 341–353 (2010).

    Article 

    Google Scholar
     

  • Hu, D. et al. Pacific western boundary currents and their roles in climate. Nature 522, 299–308 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Czaja, A., Frankignoul, C., Minobe, S. & Vannière, B. Simulating the midlatitude atmospheric circulation: what might we gain from high-resolution modeling of air-sea interactions? Curr. Clim. Change Rep. 5, 390–406 (2019).

    Article 

    Google Scholar
     

  • Seo, H. et al. Ocean mesoscale and frontal-scale ocean–atmosphere interactions and influence on large-scale climate: a review. J. Clim. 36, 1981–2013 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Kushnir, Y. et al. Atmospheric GCM response to extratropical SST anomalies: synthesis and evaluation. J. Clim. 15, 2233–2256 (2002).

    Article 
    ADS 

    Google Scholar
     

  • Frenger, I., Gruber, N., Knutti, R. & Münnich, M. Imprint of Southern Ocean eddies on winds, clouds and rainfall. Nat. Geosci. 6, 608–612 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Liu, X., Chang, P., Kurian, J., Saravanan, R. & Lin, X. Satellite-observed precipitation response to ocean mesoscale eddies. J. Clim. 31, 6879–6895 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Kwon, Y.-O. & Joyce, T. M. Northern Hemisphere Winter Atmospheric Transient Eddy Heat Fluxes and the Gulf Stream and Kuroshio–Oyashio Extension Variability. J. Clim. 26, 9839–9859 (2013).

    Article 
    ADS 

    Google Scholar
     

  • O’Reilly, C. H. & Czaja, A. The response of the Pacific storm track and atmospheric circulation to Kuroshio Extension variability. Quart. J. R. Meteorol. Soc. 141, 52–66 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Smirnov, D., Newman, M., Alexander, M. A., Kwon, Y.-O. & Frankignoul, C. Investigating the local atmospheric response to a realistic shift in the Oyashio sea surface temperature front. J. Clim. 28, 1126–1147 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Parfitt, R., Czaja, A., Minobe, S. & Kuwano‐Yoshida, A. The atmospheric frontal response to SST perturbations in the Gulf Stream region. Geophys. Res. Lett. 43, 2299–2306 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Wills, S. M., Thompson, D. W. J. & Ciasto, L. M. On the observed relationships between variability in Gulf Stream sea surface temperatures and the atmospheric circulation over the North Atlantic. J. Clim. 29, 3719–3730 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Wills, S. M. & Thompson, D. W. J. On the observed relationships between wintertime variability in Kuroshio–Oyashio extension sea surface temperatures and the atmospheric circulation over the North Pacific. J. Clim. 31, 4669–4681 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Joyce, T. M., Kwon, Y., Seo, H. & Ummenhofer, C. C. Meridional Gulf Stream shifts can influence wintertime variability in the North Atlantic storm track and Greenland blocking. Geophys. Res. Lett. 46, 1702–1708 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Frankignoul, C., Czaja, A. & L’Heveder, B. Air–sea feedback in the North Atlantic and surface boundary conditions for ocean models. J. Clim. 11, 2310–2324 (1998).

    Article 
    ADS 

    Google Scholar
     

  • Tokinaga, H. et al. Ocean frontal effects on the vertical development of clouds over the western North Pacific: in situ and satellite observations. J. Clim. 22, 4241–4260 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Nkwinkwa Njouodo, A. S., Koseki, S., Keenlyside, N. & Rouault, M. Atmospheric signature of the Agulhas current. Geophys. Res. Lett. 45, 5185–5193 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Heiderich, J. & Todd, R. E. Along-stream evolution of Gulf Stream volume transport. J. Phys. Oceanogr. 50, 2251–2270 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Kelly, K. A. et al. Western boundary currents and frontal air–sea interaction: Gulf Stream and Kuroshio Extension. J. Clim. 23, 5644–5667 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Beal, L. M. & Bryden, H. L. The velocity and vorticity structure of the Agulhas Current at 32°S. J. Geophys. Res. 104, 5151–5176 (1999).

    Article 
    ADS 

    Google Scholar
     

  • Goni, G., Kamholz, S., Garzoli, S. & Olson, D. Dynamics of the Brazil‐Malvinas Confluence based on inverted echo sounders and altimetry. J. Geophys. Res. 101, 16273–16289 (1996).

    Article 
    ADS 

    Google Scholar
     

  • Yook, S., Thompson, D. W. J., Sun, L. & Patrizio, C. The simulated atmospheric response to western North Pacific sea surface temperature anomalies. J. Clim. 35, 3335–3352 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Parfitt, R., Czaja, A. & Kwon, Y.-O. The impact of SST resolution change in the ERA‐Interim reanalysis on wintertime Gulf Stream frontal air‐sea interaction. Geophys. Res. Lett. 44, 3246–3254 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Parfitt, R. & Czaja, A. On the contribution of synoptic transients to the mean atmospheric state in the Gulf Stream region. Quart. J. R. Meteorol. Soc. 142, 1554–1561 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Parfitt, R. & Seo, H. A new framework for near‐surface wind convergence over the Kuroshio Extension and Gulf Stream in wintertime: the role of atmospheric fronts. Geophys. Res. Lett. 45, 9909–9918 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Masunaga, R., Nakamura, H., Taguchi, B. & Miyasaka, T. Processes shaping the frontal-scale time-mean surface wind convergence patterns around the Gulf Stream and Agulhas return current in winter. J. Clim. 33, 9083–9101 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Masunaga, R., Nakamura, H., Taguchi, B. & Miyasaka, T. Processes shaping the frontal-scale time-mean surface wind convergence patterns around the Kuroshio Extension in winter. J. Clim. 33, 3–25 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Schneider, N. & Qiu, B. The atmospheric response to weak sea surface temperature fronts. J. Atmos. Sci. 72, 3356–3377 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Schneider, N. Scale and Rossby number dependence of observed wind responses to ocean-mesoscale sea surface temperatures. J. Atmos. Sci. 77, 3171–3192 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Small, R. J. et al. Near-surface wind convergence over the Gulf Stream—the role of SST revisited. J. Clim. 36, 5527–5548 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Patrizio, C. R. & Thompson, D. W. J. Quantifying the role of ocean dynamics in ocean mixed layer temperature variability. J. Clim. 34, 2567–2589 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Small, R. J., Bryan, F. O., Bishop, S. P. & Tomas, R. A. Air–sea turbulent heat fluxes in climate models and observational analyses: what drives their variability? J. Clim. 32, 2397–2421 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Small, R. J., Bryan, F. O., Bishop, S. P., Larson, S. & Tomas, R. A. What drives upper-ocean temperature variability in coupled climate models and observations? J. Clim. 33, 577–596 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Laurindo, L. C. et al. Role of ocean and atmosphere variability in scale‐dependent thermodynamic air‐sea interactions. J. Geophys. Res. Oceans 127, e2021JC018340 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Kirtman, B. P., Perlin, N. & Siqueira, L. Ocean eddies and climate predictability. Chaos 27, 126902 (2017).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Bishop, S. P., Small, R. J., Bryan, F. O. & Tomas, R. A. Scale dependence of midlatitude air–sea interaction. J. Clim. 30, 8207–8221 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Hoskins, B. J. & Karoly, D. J. The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci. 38, 1179–1196 (1981).

    Article 
    ADS 

    Google Scholar
     

  • Sardeshmukh, P. D. & Hoskins, B. J. The generation of global rotational flow by steady idealized tropical divergence. J. Atmos. Sci. 45, 1228–1251 (1988).

    Article 
    ADS 

    Google Scholar
     

  • Hersbach, H. et al. The ERA5 global reanalysis. Quart. J. R. Meteorol. Soc. 146, 1999–2049 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Huang, B. et al. Improvements of the Daily Optimum Interpolation Sea Surface Temperature (DOISST) Version 2.1. J. Clim. 34, 2923–2939 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Huffman, G. J. et al. in Satellite Precipitation Measurement (eds Levizzani, V. et al.) Vol. 67, 343–353 (Springer, 2020).

  • Donlon, C. J. et al. The Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) system. Remote Sens. Environ. 116, 140–158 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Hurrell, J. W. et al. The Community Earth System Model: a framework for collaborative research. Bull. Am. Meteorol. Soc. 94, 1339–1360 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Chang, P. et al. An unprecedented set of high‐resolution Earth system simulations for understanding multiscale interactions in climate variability and change. J. Adv. Model Earth Syst. 12, e2020MS002298 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Small, R. J. et al. A new synoptic scale resolving global climate simulation using the Community Earth System Model. J. Adv. Model. Earth Syst. 6, 1065–1094 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Hoskins, B. J. & Hodges, K. I. New perspectives on the Northern Hemisphere winter storm tracks. J. Atmos. Sci. 59, 1041–1061 (2002).

    Article 
    ADS 

    Google Scholar
     

  • Hotta, D. & Nakamura, H. On the significance of the sensible heat supply from the ocean in the maintenance of the mean baroclinicity along storm tracks. J. Clim. 24, 3377–3401 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Sampe, T., Nakamura, H., Goto, A. & Ohfuchi, W. Significance of a midlatitude SST frontal zone in the formation of a storm track and an eddy-driven westerly jet. J. Clim. 23, 1793–1814 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Brayshaw, D. J., Hoskins, B. & Blackburn, M. The basic ingredients of the North Atlantic storm track. Part II: sea surface temperatures. J. Atmos. Sci. 68, 1784–1805 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Saulière, J., Brayshaw, D. J., Hoskins, B. & Blackburn, M. Further investigation of the impact of idealized continents and SST distributions on the Northern Hemisphere storm tracks. J. Atmos. Sci. 69, 840–856 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Graff, L. S. & LaCasce, J. H. Changes in the extratropical storm tracks in response to changes in SST in an AGCM. J. Clim. 25, 1854–1870 (2012).

    Article 
    ADS 

    Google Scholar
     

  • O’Reilly, C. H., Minobe, S. & Kuwano-Yoshida, A. The influence of the Gulf Stream on wintertime European blocking. Clim. Dyn. 47, 1545–1567 (2016).

    Article 

    Google Scholar
     

  • Ma, X. et al. Importance of resolving Kuroshio front and eddy influence in simulating the North Pacific storm track. J. Clim. 30, 1861–1880 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Sheldon, L. et al. A ‘warm path’ for Gulf Stream–troposphere interactions. Tellus A Dyn. Meteorol. Oceanogr. 69, 1299397 (2017).

    Article 

    Google Scholar
     

  • Kwon, Y.-O. et al. Role of the Gulf Stream and Kuroshio–Oyashio systems in large-scale atmosphere–ocean interaction: a review. J. Clim. 23, 3249–3281 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Small, R. J., Msadek, R., Kwon, Y.-O., Booth, J. F. & Zarzycki, C. Atmosphere surface storm track response to resolved ocean mesoscale in two sets of global climate model experiments. Clim. Dyn. 52, 2067–2089 (2019).

    Article 

    Google Scholar
     

  • Brayshaw, D. J., Hoskins, B. & Blackburn, M. The Storm-Track Response to Idealized SST Perturbations in an Aquaplanet GCM. J. Atmos. Sci. 65, 2842–2860 (2008).

    Article 
    ADS 

    Google Scholar
     

  • O’Neill, L. W., Chelton, D. B. & Esbensen, S. K. Observations of SST-induced perturbations of the wind stress field over the Southern Ocean on seasonal timescales. J. Clim. 16, 2340–2354 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Chelton, D. B., Schlax, M. G., Samelson, R. M. & de Szoeke, R. A. Global observations of large oceanic eddies. Geophys. Res. Lett. 34, 2007GL030812 (2007).

    Article 

    Google Scholar
     

  • Xie, S.-P. Satellite observations of cool ocean–atmosphere interaction. Bull. Am. Meteorol. Soc. 85, 195–208 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Risien, C. M. & Chelton, D. B. A global climatology of surface wind and wind stress fields from eight years of QuikSCAT scatterometer data. J. Phys. Oceanogr. 38, 2379–2413 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Small, R. J. et al. Air–sea interaction over ocean fronts and eddies. Dyn. Atmos. Oceans 45, 274–319 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Brachet, S. et al. Atmospheric circulations induced by a midlatitude SST front: a GCM study. J. Clim. 25, 1847–1853 (2012).

    Article 
    ADS 

    Google Scholar
     

  • O’Neill, L. W., Chelton, D. B. & Esbensen, S. K. The effects of SST-induced surface wind speed and direction gradients on midlatitude surface vorticity and divergence. J. Clim. 23, 255–281 (2010).

    Article 
    ADS 

    Google Scholar
     

  • O’Neill, L. W., Haack, T., Chelton, D. B. & Skyllingstad, E. The Gulf Stream convergence zone in the time-mean winds. J. Atmos. Sci. 74, 2383–2412 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Putrasahan, D. A., Miller, A. J. & Seo, H. Isolating mesoscale coupled ocean–atmosphere interactions in the Kuroshio Extension region. Dyn. Atmos. Oceans 63, 60–78 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Vannière, B., Czaja, A., Dacre, H. & Woollings, T. A “cold path” for the Gulf Stream–troposphere connection. J. Clim. 30, 1363–1379 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Elson, P. et al. SciTools/cartopy: v.0.22.0. Zenodo https://doi.org/10.5281/zenodo.1182735 (2023).

  • Larson, J. Signature of the western boundary currents in local climate variability. https://doi.org/10.17605/OSF.IO/M84U2 (OSF, 2024).

  • RELATED ARTICLES

    Most Popular

    Recent Comments