Tuesday, June 24, 2025
No menu items!
HomeNatureShielding Pt/γ-Mo2N by inert nano-overlays enables stable H2 production

Shielding Pt/γ-Mo2N by inert nano-overlays enables stable H2 production

  • Fu, Q. et al. Interface-confined ferrous centers for catalytic oxidation. Science 328, 1141–1144 (2010).

    Article 
    CAS 
    PubMed 
    MATH 
    ADS 

    Google Scholar
     

  • Cao, L. et al. Atomically dispersed iron hydroxide anchored on Pt for preferential oxidation of CO in H2. Nature 565, 631–635 (2019).

    Article 
    CAS 
    PubMed 
    MATH 
    ADS 

    Google Scholar
     

  • Ye, T.-N. et al. Vacancy-enabled N2 activation for ammonia synthesis on an Ni-loaded catalyst. Nature 583, 391–395 (2020).

    Article 
    CAS 
    PubMed 
    MATH 
    ADS 

    Google Scholar
     

  • Lin, L. et al. Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts. Nature 544, 80–83 (2017).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Cargnello, M. et al. Control of metal nanocrystal size reveals metal-support interface role for ceria catalysts. Science 341, 771–773 (2013).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • van Deelen, T. W., Mejia, C. H. & de Jong, K. P. Control of metal-support interactions in heterogeneous catalysts to enhance activity and selectivity. Nat. Catal. 2, 955–970 (2019).

    Article 

    Google Scholar
     

  • Ro, I. et al. Bifunctional hydroformylation on heterogeneous Rh-WOx pair site catalysts. Nature 609, 287–292 (2022).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Liu, Z. et al. Water-promoted interfacial pathways in methane oxidation to methanol on a CeO2-Cu2O catalyst. Science 368, 513–517 (2020).

    Article 
    CAS 
    PubMed 
    MATH 
    ADS 

    Google Scholar
     

  • Zhang, X. et al. A stable low-temperature H2-production catalyst by crowding Pt on α-MoC. Nature 589, 396–401 (2021).

    Article 
    CAS 
    PubMed 
    MATH 
    ADS 

    Google Scholar
     

  • Qiao, B. et al. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 3, 634–641 (2011).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Peng, M. et al. Fully exposed cluster catalyst (FECC): toward rich surface sites and full atom utilization efficiency. ACS Central Sci. 7, 262–273 (2021).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Dong, C. Y. et al. Fully exposed palladium cluster catalysts enable hydrogen production from nitrogen heterocycles. Nat. Catal. 5, 485–493 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Jones, J. et al. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science 353, 150–154 (2016).

    Article 
    CAS 
    PubMed 
    MATH 
    ADS 

    Google Scholar
     

  • Hannagan, R. T. et al. First-principles design of a single-atom-alloy propane dehydrogenation catalyst. Science 372, 1444–1447 (2021).

    Article 
    CAS 
    MATH 
    ADS 

    Google Scholar
     

  • Hulva, J. et al. Unraveling CO adsorption on model single-atom catalysts. Science 371, 375–379 (2021).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Cargnello, M. et al. Exceptional activity for methane combustion over modular Pd@CeO2 subunits on functionalized Al2O3. Science 337, 713–717 (2012).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Li, X. et al. Functional CeOx nanoglues for robust atomically dispersed catalysts. Nature 611, 284–288 (2022).

    Article 
    CAS 
    PubMed 
    MATH 
    ADS 

    Google Scholar
     

  • Yang, X. et al. Taming the stability of Pd active phases through a compartmentalizing strategy toward nanostructured catalyst supports. Nat. Commun. 10, 1611 (2019).

    Article 
    PubMed 
    PubMed Central 
    MATH 
    ADS 

    Google Scholar
     

  • Peterson, E. J. et al. Low-temperature carbon monoxide oxidation catalysed by regenerable atomically dispersed palladium on alumina. Nat. Commun. 5, 4885 (2014).

    Article 
    MathSciNet 
    CAS 
    PubMed 
    MATH 
    ADS 

    Google Scholar
     

  • Levy, R. B. & Boudart, M. Platinum-like behavior of tungsten carbide in surface catalysis. Science 181, 547–549, (1973).

    Article 
    CAS 
    PubMed 
    MATH 
    ADS 

    Google Scholar
     

  • Chen, J. G. G. Carbide and nitride overlayers on early transition metal surfaces: preparation, characterization, and reactivities. Chem. Rev. 96, 1477–1498 (1996).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Hwu, H. H. & Chen, J. G. Surface chemistry of transition metal carbides. Chem. Rev. 105, 185–212 (2005).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Lin, L. L. et al. Atomically dispersed Ni/α-MoC catalyst for hydrogen production from methanol/water. J. Am. Chem. Soc. 143, 309–317 (2021).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Setthapun, W., Bej, S. K. & Thompson, L. T. Carbide and nitride supported methanol steam reforming catalysts: Parallel synthesis and high throughput screening. Top. Catal. 49, 73–80 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Yao, S. et al. Atomic-layered Au clusters on α-MoC as catalysts for the low-temperature water-gas shift reaction. Science 357, 389–393 (2017).

    Article 
    CAS 
    PubMed 
    MATH 
    ADS 

    Google Scholar
     

  • Zhang, Z.-S. et al. Intrinsically active surface in a Pt/γ-Mo2N catalyst for the water-gas shift reaction: molybdenum nitride or molybdenum oxide? J. Am. Chem. Soc. 142, 13362–13371 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hansen, T. W., DeLaRiva, A. T., Challa, S. R. & Datye, A. K. Sintering of catalytic nanoparticles: particle migration or Ostwald ripening? Acc. Chem. Res. 46, 1720–1730, (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng, X., Lin, H., Zheng, J., Duan, X. & Yuan, Y. Lanthanum oxide-modified Cu/SiO2 as a high-performance catalyst for chemoselective hydrogenation of dimethyl oxalate to ethylene glycol. ACS Catal. 3, 2738–2749 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Villars, P. (ed.) PAULING FILE in: Inorganic Solid Phases, SpringerMaterials c_0210243 (Springer-Verlag, 2016); https://materials.springer.com/isp/phase-diagram/docs/c_0210243.

  • Gao, Z., Li, A., Ma, D. & Zhou, W. Electron energy loss spectroscopy for single atom catalysis. Top. Catal. 65, 1609–1619 (2022).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Haynes, W. M. (ed.) CRC Handbook of Chemistry and Physics 92nd edn (CRC Press, 2011).

  • Nielsen, M. et al. Low-temperature aqueous-phase methanol dehydrogenation to hydrogen and carbon dioxide. Nature 495, 85–89 (2013).

    Article 
    CAS 
    PubMed 
    MATH 
    ADS 

    Google Scholar
     

  • Ziegler, C. et al. ZnPd/ZnO aerogels as potential catalytic materials. Adv. Funct. Mater. 26, 1014–1020 (2016).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Cortright, R. D., Davda, R. R. & Dumesic, J. A. Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water. Nature 418, 964–967, (2002).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Tian, H., Roberts, C. A. & Wachs, I. E. Molecular structural determination of molybdena in different environments: aqueous solutions, bulk mixed oxides, and supported MoO3 catalysts. J. Phys. Chem. C 114, 14110–14120 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kresse, G. & Hafner, J. Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B 48, 13115–13118 (1993).

    Article 
    CAS 
    MATH 
    ADS 

    Google Scholar
     

  • Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article 
    CAS 
    MATH 
    ADS 

    Google Scholar
     

  • Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A Consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104–154123 (2010).

    Article 
    PubMed 
    ADS 

    Google Scholar
     

  • Dudarev, S. L., Botton, G. A., Savrasov, S. Y., Humphreys, C. J. & Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA + U study. Phys. Rev. B 57, 1505–1509 (1998).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Henkelman, G., Uberuaga, B. P. & Jonsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).

    Article 
    CAS 
    MATH 
    ADS 

    Google Scholar
     

  • Shao, Z. et al. Maximizing the synergistic effect between Pt0 and Ptδ+ in a confined Pt-based catalyst for durable hydrogen production. Appl. Catal. B Environ. 316, 121669 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Gupta, P., Dwivedi, S., van Duin, A. C. T., Srinivas, S. & Tanksale, A. Coke resistant catalyst for hydrogen production in a versatile, multi-fuel, reformer. J. Catal. 402, 177–193 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Köwitsch, N. et al. Unprecedented catalytic activity and selectivity in methanol steam reforming by reactive transformation of intermetallic In–Pt compounds. J. Phys. Chem. C 125, 9809–9817 (2021).

    Article 
    MATH 

    Google Scholar
     

  • Wang, H. et al. Titanosilicate zeolite supported Pt nanoparticles with electronic metal-support interactions for efficient methanol steam reforming. Catal. Today 382, 42–47 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Liao, L. et al. Unravelling the morphology effect of Pt/In2O3 catalysts for highly efficient hydrogen production by methanol steam reforming. Fuel 372, 132221 (2024).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Li, D., Sun, J., Ma, R. & Wei, J. High-efficient solar-driven hydrogen production by full-spectrum synergistic photo-thermo-catalytic methanol steam reforming with in-situ photoreduced Pt-CuOx catalyst. J. Energy Chem. 71, 460–469 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Wang, Y., Yao, E.-P., Wu, L., Feldmann, J. & Stolarczyk, J. K. A multi-layer device for light-triggered hydrogen production from alkaline methanol. Angew. Chem. Int. Ed. 60, 26694–26701 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Luo, J. et al. Efficient base-free aqueous reforming of methanol homogeneously catalyzed by ruthenium exhibiting a remarkable acceleration by added catalytic thiol. J. Am. Chem. Soc. 143, 17284–17291 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu, P., Diskin-Posner, Y., Ben-David, Y. & Milstein, D. Reusable homogeneous catalytic system for hydrogen production from methanol and water. ACS Catal. 4, 2649–2652 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Fujita, K., Kawahara, R., Aikawa, T. & Yamaguchi, R. Hydrogen production from a methanol-water solution catalyzed by an anionic iridium complex bearing a functional bipyridonate ligand under weakly basic conditions. Angew. Chem. Int. Ed. 54, 9057–9060 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Alberico, E. et al. Selective hydrogen production from methanol with a defined iron pincer catalyst under mild conditions. Angew. Chem. Int. Ed. 52, 14162–14166 (2013).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Bielinski, E. A. et al. Base-free methanol dehydrogenation using a pincer-supported iron compound and Lewis acid co-catalyst. ACS Catal. 5, 2404–2415 (2015).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments