Friday, September 19, 2025
No menu items!
HomeNatureSelective presynaptic inhibition of leg proprioception in behaving Drosophila

Selective presynaptic inhibition of leg proprioception in behaving Drosophila

  • Proske, U. & Gandevia, S. C. The proprioceptive senses: their roles in signaling body shape, body position and movement, and muscle force. Physiol. Rev. 92, 1651–1697 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tuthill, J. C. & Azim, E. Proprioception. Curr. Biol. 28, R194–R203 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Azim, E. & Seki, K. Gain control in the sensorimotor system. Curr. Opin. Physiol. 8, 177–187 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wolf, H. & Burrows, M. Proprioceptive sensory neurons of a locust leg receive rhythmic presynaptic inhibition during walking. J. Neurosci. 15, 5623–5636 (1995).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fink, A. J. P. et al. Presynaptic inhibition of spinal sensory feedback ensures smooth movement. Nature 509, 43–48 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koch, S. C. et al. RORβ spinal interneurons gate sensory transmission during locomotion to secure a fluid walking gait. Neuron 96, 1419–1431 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Azevedo, A. et al. Connectomic reconstruction of a female Drosophila ventral nerve cord. Nature 631, 360–368 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Takemura, S. et al. A connectome of the male Drosophila ventral nerve cord. eLife 13, RP97769 (2024).


    Google Scholar
     

  • Marin, E. C. et al. Systematic annotation of a complete adult male Drosophila nerve cord connectome reveals principles of functional organisation. eLife 13, RP97766 (2024).


    Google Scholar
     

  • Rossignol, S., Dubuc, R. & Gossard, J.-P. Dynamic sensorimotor interactions in locomotion. Physiol. Rev. 86, 89–154 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Dallmann, C. J., Karashchuk, P., Brunton, B. W. & Tuthill, J. C. A leg to stand on: computational models of proprioception. Curr. Opin. Physiol. 22, 100426 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Frigon, A., Akay, T. & Prilutsky, B. I. Control of mammalian locomotion by somatosensory feedback Compr. Physiol. 12, 2877–2947 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McComas, A. J. Hypothesis: Hughlings Jackson and presynaptic inhibition: is there a big picture? J. Neurophysiol. 116, 41–50 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Crapse, T. B. & Sommer, M. A. Corollary discharge across the animal kingdom. Nat. Rev. Neurosci. 9, 587–600 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Straka, H., Simmers, J. & Chagnaud, B. P. A new perspective on predictive motor signaling. Curr. Biol. 28, R232–R243 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cullen, K. E. Sensory signals during active versus passive movement. Curr. Opin. Neurobiol. 14, 698–706 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Daly, K. C. & Dacks, A. The self as part of the sensory ecology: how behavior affects sensation from the inside out. Curr. Opin. Insect Sci. 58, 101053 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Clarac, F. & Cattaert, D. Invertebrate presynaptic inhibition and motor control. Exp. Brain Res. 112, 163–180 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rudomin, P. & Schmidt, R. F. Presynaptic inhibition in the vertebrate spinal cord revisited. Exp. Brain Res. 129, 1–37 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kuan, A. T. et al. Dense neuronal reconstruction through X-ray holographic nano-tomography. Nat. Neurosci. 23, 1637–1643 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mamiya, A., Gurung, P. & Tuthill, J. C. Neural coding of leg proprioception in Drosophila. Neuron 100, 636–650 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mamiya, A. et al. Biomechanical origins of proprioceptor feature selectivity and topographic maps in the Drosophila leg. Neuron 111, 3230–3243 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Agrawal, S. et al. Central processing of leg proprioception in Drosophila. eLife 9, e60299 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, C. et al. Functional architecture of neural circuits for leg proprioception in Drosophila. Curr. Biol. 31, 5163–5175 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chockley, A. S. et al. Subsets of leg proprioceptors influence leg kinematics but not interleg coordination in Drosophila melanogaster walking. J. Exp. Biol. 225, jeb244245 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Lee, S.-Y. J., Dallmann, C. J., Cook, A., Tuthill, J. C. & Agrawal, S. Divergent neural circuits for proprioceptive and exteroceptive sensing of the Drosophila leg. Nat. Commun. 16, 4105 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hooper, S. L. et al. Neural control of unloaded leg posture and of leg swing in stick insect, cockroach, and mouse differs from that in larger animals. J. Neurosci. 29, 4109–4119 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ache, J. M. & Matheson, T. Passive joint forces are tuned to limb use in insects and drive movements without motor activity. Curr. Biol. 23, 1418–1426 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harris, R. M., Pfeiffer, B. D., Rubin, G. M. & Truman, J. W. Neuron hemilineages provide the functional ground plan for the Drosophila ventral nervous system. eLife 4, e04493 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lacin, H. et al. Neurotransmitter identity is acquired in a lineage-restricted manner in the Drosophila CNS. eLife 8, e43701 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tuthill, J. C. & Wilson, R. I. Mechanosensation and adaptive motor control in insects. Curr. Biol. 26, R1022–R1038 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sapkal, N. et al. Neural circuit mechanisms underlying context-specific halting in Drosophila. Nature 634, 191–200 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, H. H. et al. Fine-grained descending control of steering in walking Drosophila. Cell 187, 6290–6308 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rayshubskiy, A. et al. Neural circuit mechanisms for steering control in walking Drosophila. eLife 13, RP102230 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo, L., Zhang, N. & Simpson, J. H. Descending neurons coordinate anterior grooming behavior in Drosophila. Curr. Biol. 32, 823–833 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheong, H. S. J. et al. Transforming descending input into behavior: the organization of premotor circuits in the Drosophila male adult nerve cord connectome. eLife 13, RP96084 (2024).


    Google Scholar
     

  • Sterne, G. R., Otsuna, H., Dickson, B. J. & Scott, K. Classification and genetic targeting of cell types in the primary taste and premotor center of the adult Drosophila brain. eLife 10, e71679 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng, Z. et al. A complete electron microscopy volume of the brain of adult Drosophila melanogaster. Cell 174, 730–743 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dorkenwald, S. et al. Neuronal wiring diagram of an adult brain. Nature 634, 124–138 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schlegel, P. et al. Whole-brain annotation and multi-connectome cell typing of Drosophila. Nature 634, 139–152 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Emanuel, S., Kaiser, M., Pflueger, H.-J. & Libersat, F. On the role of the head ganglia in posture and walking in insects. Front. Physiol. 11, 135 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shiu, P. K. et al. A Drosophila computational brain model reveals sensorimotor processing. Nature 634, 210–219 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Burrows, M. & Laurent, G. Synaptic potentials in the central terminals of locust proprioceptive afferents generated by other afferents from the same sense organ. J. Neurosci. 13, 808–819 (1993).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Burrows, M. & Matheson, T. A presynaptic gain control mechanism among sensory neurons of a locust leg proprioceptor. J. Neurosci. 14, 272–282 (1994).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sauer, A. E., Büschges, A. & Stein, W. Role of presynaptic inputs to proprioceptive afferents in tuning sensorimotor pathways of an insect joint control network. J. Neurobiol. 32, 359–376 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gebehart, C. & Büschges, A. The processing of proprioceptive signals in distributed networks: insights from insect motor control. J. Exp. Biol. 227, jeb246182 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Ramirez, J.-M., Büschges, A. & Kittmann, R. Octopaminergic modulation of the femoral chordotonal organ in the stick insect. J. Comp. Physiol. A 173, 209–219 (1993).

    Article 

    Google Scholar
     

  • Matheson, T. Octopamine modulates the responses and presynaptic inhibition of proprioceptive sensory neurones in the locust Schistocerca gregaria. J. Exp. Biol. 200, 1317–1325 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bässler, U. The femur-tibia control system of stick insects: a model system for the study of the neural basis of joint control. Brain Res. Rev. 18, 207–226 (1993).

    Article 
    PubMed 

    Google Scholar
     

  • Dean, J. Control of leg protraction in the stick insect: a targeted movement showing compensation for externally applied forces. J. Comp. Physiol. A 155, 771–781 (1984).

    Article 

    Google Scholar
     

  • Takeoka, A., Vollenweider, I., Courtine, G. & Arber, S. Muscle spindle feedback directs locomotor recovery and circuit reorganization after spinal cord injury. Cell 159, 1626–1639 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mayer, W. P. & Akay, T. The role of muscle spindle feedback in the guidance of hindlimb movement by the ipsilateral forelimb during locomotion in mice. eNeuro 8, ENEURO.0432-21.2021 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mackrous, I., Carriot, J. & Cullen, K. E. Context-independent encoding of passive and active self-motion in vestibular afferent fibers during locomotion in primates. Nat. Commun. 13, 120 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seki, K., Perlmutter, S. I. & Fetz, E. E. Sensory input to primate spinal cord is presynaptically inhibited during voluntary movement. Nat. Neurosci. 6, 1309–1316 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tomatsu, S., Kim, G., Kubota, S. & Seki, K. Presynaptic gating of monkey proprioceptive signals for proper motor action. Nat. Commun. 14, 6537 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pichler, P. & Lagnado, L. Motor behavior selectively inhibits hair cells activated by forward motion in the lateral line of zebrafish. Curr. Biol. 30, 150–157 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Odstrcil, I. et al. Functional and ultrastructural analysis of reafferent mechanosensation in larval zebrafish. Curr. Biol. 32, 176–189 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wallach, A. & Sawtell, N. B. An internal model for canceling self-generated sensory input in freely behaving electric fish. Neuron 111, 2570–2582 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Poulet, J. F. A. & Hedwig, B. The cellular basis of a corollary discharge. Science 311, 518–522 (2006).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gisselmann, G., Plonka, J., Pusch, H. & Hatt, H. Drosophila melanogaster GRD and LCCH3 subunits form heteromultimeric GABA‐gated cation channels. Br. J. Pharmacol. 142, 409–413 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bogovic, J. A. et al. An unbiased template of the Drosophila brain and ventral nerve cord. PLoS ONE 15, e0236495 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jenett, A. et al. A GAL4-driver line resource for Drosophila neurobiology. Cell Rep. 2, 991–1001 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meissner, G. W. et al. A searchable image resource of Drosophila GAL4 driver expression patterns with single neuron resolution. eLife 12, e80660 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Davie, K. et al. A single-cell transcriptome atlas of the aging Drosophila brain. Cell 174, 982–998 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, C.-L. et al. Imaging neural activity in the ventral nerve cord of behaving adult Drosophila. Nat. Commun. 9, 4390 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hermans, L. et al. Microengineered devices enable long-term imaging of the ventral nerve cord in behaving adult Drosophila. Nat. Commun. 13, 5006 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moore, R. J. D. et al. FicTrac: a visual method for tracking spherical motion and generating fictive animal paths. J. Neurosci. Methods 225, 106–119 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Mathis, A. et al. DeepLabCut: markerless pose estimation of user-defined body parts with deep learning. Nat. Neurosci. 21, 1281–1289 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Karashchuk, P. et al. Anipose: a toolkit for robust markerless 3D pose estimation. Cell Rep. 36, 109730 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guizar-Sicairos, M., Thurman, S. T. & Fienup, J. R. Efficient subpixel image registration algorithms. Opt. Lett. 33, 156–158 (2008).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Weir, P. T. & Dickinson, M. H. Functional divisions for visual processing in the central brain of flying Drosophila. Proc. Natl Acad. Sci. USA 112, E5523–E5532 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Azevedo, A. W. et al. A size principle for recruitment of Drosophila leg motor neurons. eLife 9, e56754 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Klapoetke, N. C. et al. Independent optical excitation of distinct neural populations. Nat. Methods 11, 338–346 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mohammad, F. et al. Optogenetic inhibition of behavior with anion channelrhodopsins. Nat. Methods 14, 271–274 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Govorunova, E. G., Sineshchekov, O. A., Janz, R., Liu, X. & Spudich, J. L. Natural light-gated anion channels: a family of microbial rhodopsins for advanced optogenetics. Science 349, 647–650 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pratt, B. G., Lee, S.-Y. J., Chou, G. M. & Tuthill, J. C. Miniature linear and split-belt treadmills reveal mechanisms of adaptive motor control in walking Drosophila. Curr. Biol. 34, 4368–4381 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Phelps, J. S. et al. Reconstruction of motor control circuits in adult Drosophila using automated transmission electron microscopy. Cell 184, 759–774 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dorkenwald, S. et al. CAVE: Connectome Annotation Versioning Engine. Nat. Methods 22, 1112–1120 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eckstein, N. et al. Neurotransmitter classification from electron microscopy images at synaptic sites in Drosophila melanogaster. Cell 187, 2574–2594 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stürner, T. et al. Comparative connectomics of Drosophila descending and ascending neurons. Nature 643, 158–172 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lesser, E. et al. Synaptic architecture of leg and wing premotor control networks in Drosophila. Nature 631, 369–377 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Plaza, S. M. et al. neuPrint: an open access tool for EM connectomics. Front. Neuroinform. 16, 896292 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dallmann, C. J. et al. Data from: Selective presynaptic inhibition of leg proprioception in behaving Drosophila. Dryad https://doi.org/10.5061/dryad.gqnk98t16 (2025).

  • Buhmann, J. et al. Automatic detection of synaptic partners in a whole-brain Drosophila electron microscopy data set. Nat. Methods 18, 771–774 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments