Fukao, Y., Obayashi, M., Inoue, H. & Nenbai, M. Subducting slabs stagnant in the mantle transition zone. J. Geophys. Res. Solid Earth 97, 4809–4822 (1992).
Goes, S., Agrusta, R., van Hunen, J. & Garel, F. Subduction-transition zone interaction: a review. Geosphere 13, 644–664 (2017).
Goes, S., Yu, C., Ballmer, M. D., Yan, J. & van der Hilst, R. D. Compositional heterogeneity in the mantle transition zone. Nat. Rev. Earth Environ. 3, 533–550 (2022).
Tauzin, B., Waszek, L., Ballmer, M. D., Afonso, J. C. & Bodin, T. Basaltic reservoirs in the Earth’s mantle transition zone. Proc. Natl Acad. Sci. USA 119, e2209399119 (2022).
Yan, J., Ballmer, M. D. & Tackley, P. J. The evolution and distribution of recycled oceanic crust in the Earth’s mantle: insight from geodynamic models. Earth Planet. Sci. Lett. 537, 116171 (2020).
Braszus, B. et al. Subduction history of the Caribbean from upper-mantle seismic imaging and plate reconstruction. Nat. Commun. 12, 4211 (2021).
Chen, Y.-W., Wu, J. & Goes, S. Lesser Antilles slab reconstruction reveals lateral slab transport under the Caribbean since 50 Ma. Earth Planet. Sci. Lett. 627, 118561 (2024).
Dziewonski, A. M. & Anderson, D. L. Preliminary reference Earth model. Phys. Earth Planet. Inter. 25, 297–356 (1981).
Ringwood, A. E. Composition and Petrology of the Earth’s Mantle (McGraw-Hill, 1975).
Ito, E. & Katsura, T. A temperature profile of the mantle transition zone. Geophys. Res. Lett. 16, 425–428 (1989).
Lawrence, J. F. & Shearer, P. M. Imaging mantle transition zone thickness with SdS–SS finite-frequency sensitivity kernels. Geophys. J. Int. 174, 143–158 (2008).
Niu, F., Kawakatsu, H. & Fukao, Y. Seismic evidence for a chemical heterogeneity in the midmantle: a strong and slightly dipping seismic reflector beneath the Mariana subduction zone. J. Geophys. Res. Solid Earth 108, 2419 (2003).
Waszek, L., Tauzin, B., Schmerr, N. C., Ballmer, M. D. & Afonso, J. C. A poorly mixed mantle transition zone and its thermal state inferred from seismic waves. Nat. Geosci. 14, 949–955 (2021).
Munch, F. D., Khan, A., Tauzin, B., van Driel, M. & Giardini, D. Seismological evidence for thermo-chemical heterogeneity in Earth’s continental mantle. Earth Planet. Sci. Lett. 539, 116240 (2020).
Bissig, F., Khan, A. & Giardini, D. Evidence for basalt enrichment in the mantle transition zone from inversion of triplicated P- and S-waveforms. Earth Planet. Sci. Lett. 580, 117387 (2022).
Conrad, C. P. & Lithgow-Bertelloni, C. How mantle slabs drive plate tectonics. Science 298, 207–209 (2002).
Bercovici, D. & Karato, S. I. Whole-mantle convection and the transition-zone water filter. Nature 425, 39–44 (2003).
Stixrude, L. & Lithgow-Bertelloni, C. Thermodynamics of the Earth’s mantle. Rev. Mineral. Geochem. 71, 465–484 (2010).
Qin, Y., Singh, S. C., Grevemeyer, I., Marjanovic, M. & Roger Buck, W. Discovery of flat seismic reflections in the mantle beneath the young Juan de Fuca Plate. Nat. Commun. 11, 4122 (2020).
Ohira, A. et al. Evidence for frozen melts in the mid-lithosphere detected from active-source seismic data. Sci. Rep. 7, 15770 (2017).
Naif, S., Key, K., Constable, S. & Evans, R. L. Melt-rich channel observed at the lithosphere–asthenosphere boundary. Nature 495, 356–359 (2013).
Stern, T. A. et al. A seismic reflection image for the base of a tectonic plate. Nature 518, 85–88 (2015).
Sim, S. J., Spiegelman, M., Stegman, D. R. & Wilson, C. The influence of spreading rate and permeability on melt focusing beneath mid-ocean ridges. Phys. Earth Planet. Inter. 304, 106486 (2020).
Escartín, J. et al. Central role of detachment faults in accretion of slow-spreading oceanic lithosphere. Nature 455, 790–794 (2008).
Goes, S. et al. Project VoiLA: volatile recycling in the Lesser Antilles. Eos https://eos.org/science-updates/project-voila-the-volatile-recycling-in-the-lesser-antilles (2019).
Lindner, M. et al. Complex Martinique intermediate-depth earthquake reactivates early Atlantic break-up structures. Geophys. Res. Lett. 51, e2024GL108922 (2024).
Frost, D. J. & Dolejš, D. Experimental determination of the effect of H2O on the 410-km seismic discontinuity. Earth Planet. Sci. Lett. 256, 182–195 (2007).
van Benthem, S., Govers, R., Spakman, W. & Wortel, R. Tectonic evolution and mantle structure of the Caribbean. J. Geophys. Res. Solid Earth 118, 3019–3036 (2013).
Ishii, T., Kojitani, H. & Akaogi, M. Phase relations and mineral chemistry in pyrolitic mantle at 1600–2200 °C under pressures up to the uppermost lower mantle: phase transitions around the 660-km discontinuity and dynamics of upwelling hot plumes. Phys. Earth Planet. Inter. 274, 127–137 (2018).
Huang, J., Vanacore, E., Niu, F. & Levander, A. Mantle transition zone beneath the Caribbean-South American plate boundary and its tectonic implications. Earth Planet. Sci. Lett. 289, 105–111 (2010).
Muir, J. M. R., Zhang, F. & Brodholt, J. P. The effect of water on the post-spinel transition and evidence for extreme water contents at the bottom of the transition zone. Earth Planet. Sci. Lett. 565, 116909 (2021).
Kubo, T. et al. Mechanisms and kinetics of the post-spinel transformation in Mg2SiO4. Phys. Earth Planet. Inter. 129, 153–171 (2002).
Hirose, K. Phase transitions in pyrolitic mantle around 670-km depth: implications for upwelling of plumes from the lower mantle. J. Geophys. Res. Solid Earth 107, ECV 3-1–ECV 3–13 (2002).
Chanyshev, A. et al. Depressed 660-km discontinuity caused by akimotoite–bridgmanite transition. Nature 601, 69–73 (2022).
Hirose, K., Fei, Y., Ma, Y. & Mao, H.-K. The fate of subducted basaltic crust in the Earth’s lower mantle. Nature 397, 53–56 (1999).
Wei, W., Ma, Z., Sun, N., Sun, D. & Tkachev, S. N. High pressure-temperature single-crystal elasticity of grossular: implications for the low-velocity layer in the bottom transition zone. Geophys. Res. Lett. 48, e2021GL093540 (2021).
Yu, C., Goes, S., Day, E. A. & van der Hilst, R. D. Seismic evidence for global basalt accumulation in the mantle transition zone. Sci. Adv. 9, eadg0095 (2023).
Wang, J. & Gu, Y. J. Slab stagnation vs. penetration of Nazca subduction inferred from shear wave reflectivity. Earth Planet. Sci. Lett. 599, 117867 (2022).
Feng, J., Yao, H., Wang, Y., Poli, P. & Mao, Z. Segregated oceanic crust trapped at the bottom mantle transition zone revealed from ambient noise interferometry. Nat. Commun. 12, 2531 (2021).
van Keken, P., Karato, S. & Yuen, D. Rheological control of oceanic crust separation in the transition zone. Geophys. Res. Lett. 23, 1821–1824 (1996).
Gaherty, J. B. & Hager, B. H. Compositional vs. thermal buoyancy and the evolution of subducted lithosphere. Geophys. Res. Lett. 21, 141–144 (1994).
van Rijsingen, E. M. et al. Ongoing tectonic subsidence in the Lesser Antilles subduction zone. Geophys. J. Int. 231, 319–326 (2022).
Allen, R. W. et al. The role of arc migration in the development of the Lesser Antilles: a new tectonic model for the Cenozoic evolution of the eastern Caribbean. Geology 47, 891–895 (2019).
Harris, C. W., Miller, M. S. & Porritt, R. W. Tomographic imaging of slab segmentation and deformation in the Greater Antilles. Geochem. Geophys. Geosyst. 19, 2292–2307 (2018).
Ballmer, M. D., Schmerr, N. C., Nakagawa, T. & Ritsema, J. Compositional mantle layering revealed by slab stagnation at ~1000-km depth. Sci. Adv. 1, e1500815 (2015).
Hayes, G. P. et al. Slab2, a comprehensive subduction zone geometry model. Science 362, 58–61 (2018).
Amaru, M. Global Travel Time Tomography with 3-D Reference Models No. 274 (Utrecht University, 2007).
Bie, L. et al. Along-arc heterogeneity in local seismicity across the Lesser Antilles subduction zone from a dense ocean-bottom seismometer network. Seismol. Res. Lett. 91, 237–247 (2019).
Bell, S. W., Forsyth, D. W. & Ruan, Y. Removing noise from the vertical component records of ocean-bottom seismometers: results from year one of the Cascadia Initiative. Bull. Seismol. Soc. Am. 105, 300–313 (2015).
Crawford, W. C. & Webb, S. C. Identifying and removing tilt noise from low-frequency (<0.1 Hz) seafloor vertical seismic data. Bull. Seismol. Soc. Am. 90, 952–963 (2000).
Rychert, C. A., Harmon, N. & Tharimena, S. Scattered wave imaging of the oceanic plate in Cascadia. Sci. Adv. 4, eaao1908 (2018).
Chichester, B. et al. Seafloor sediment thickness beneath the VoiLA broad-band ocean-bottom seismometer deployment in the Lesser Antilles from P-to-S delay times. Geophys. J. Int. 223, 1758–1768 (2020).
Ruan, Y., Forsyth, D. W. & Bell, S. W. Marine sediment shear velocity structure from the ratio of displacement to pressure of Rayleigh waves at seafloor. J. Geophys. Res. Solid Earth 119, 6357–6371 (2014).
Nafe, J. E. & Drake, C. L. Variation with depth in shallow and deep water marine sediments of porosity, density and the velocities of compressional and shear waves. Geophysics 22, 523–552 (1957).
Ligorria, J. P. & Charles, J. A. Iterative deconvolution and receiver-function estimation. Bull. Seismol. Soc. Am. 89, 1395–1400 (1999).
Kennett, B. L., Engdahl, E. & Buland, R. Constraints on seismic velocities in the Earth from traveltimes. Geophys. J. Int. 122, 108–124 (1995).
Melekhova, E. et al. Lateral variation in crustal structure along the Lesser Antilles arc from petrology of crustal xenoliths and seismic receiver functions. Earth Planet. Sci. Lett. 516, 12–24 (2019).
Schellart, W. P. Kinematics of subduction and subduction-induced flow in the upper mantle. J. Geophys. Res. Solid Earth 109, B07401 (2004).
Yang, J. & Faccenda, M. Intraplate volcanism originating from upwelling hydrous mantle transition zone. Nature 579, 88–91 (2020).
Zhu, H., Stern, R. J. & Yang, J. Seismic evidence for subduction-induced mantle flows underneath Middle America. Nat. Commun. 11, 2075 (2020).
Kong, F., Gao, S. S., Liu, K. H. & Li, J. Potassic volcanism induced by mantle upwelling through a slab window: evidence from shear wave splitting analyses in Central Java. J. Geophys. Res. Solid Earth 127, e2021JB023719 (2022).
Sun, M., Yu, Y., Gao, S. S. & Liu, K. H. Stagnation and tearing of the subducting northwest Pacific slab. Geology 50, 676–680 (2022).
Schmid, C., Goes, S., van der Lee, S. & Giardini, D. Fate of the Cenozoic Farallon slab from a comparison of kinematic thermal modeling with tomographic images. Earth Planet. Sci. Lett. 204, 17–32 (2002).
Müller, R. D. et al. A global plate model including lithospheric deformation along major rifts and orogens since the Triassic. Tectonics 38, 1884–1907 (2019).
Connolly, J. A. Computation of phase equilibria by linear programming: a tool for geodynamic modeling and its application to subduction zone decarbonation. Earth Planet. Sci. Lett. 236, 524–541 (2005).
Stixrude, L. & Lithgow-Bertelloni, C. Thermodynamics of mantle minerals – II. Phase equilibria. Geophys. J. Int. 184, 1180–1213 (2011).
Xu, W., Lithgow-Bertelloni, C., Stixrude, L. & Ritsema, J. The effect of bulk composition and temperature on mantle seismic structure. Earth Planet. Sci. Lett. 275, 70–79 (2008).
Kennett, B. Seismic Wave Propagation in Stratified Media (Cambridge Univ. Press, 1983).
Tong, P., Chen, C. W., Komatitsch, D., Basini, P. & Liu, Q. High-resolution seismic array imaging based on an SEM-FK hybrid method. Geophys. J. Int. 197, 369–395 (2014).
Tromp, J., Komatitsch, D. & Liu, Q. Spectral-element and adjoint methods in seismology. Commun. Comput. Phys. 3, 1–32 (2008).
Irifune, T. et al. The postspinel phase boundary in Mg2SiO4 determined by in situ X-ray diffraction. Science 279, 1698–1700 (1998).
Shim, S.-H., Duffy, T. S. & Shen, G. The post-spinel transformation in Mg2SiO4 and its relation to the 660-km seismic discontinuity. Nature 411, 571–574 (2001).
Katsura, T. et al. Post-spinel transition in Mg2SiO4 determined by high P–T in situ X-ray diffractometry. Phys. Earth Planet. Inter. 136, 11–24 (2003).
Fei, Y. et al. Experimentally determined postspinel transformation boundary in Mg2SiO4 using MgO as an internal pressure standard and its geophysical implications. J. Geophys. Res. Solid Earth 109, B02305 (2004).
Litasov, K., Ohtani, E., Sano, A., Suzuki, A. & Funakoshi, K. In situ X-ray diffraction study of post-spinel transformation in a peridotite mantle: implication for the 660-km discontinuity. Earth Planet. Sci. Lett. 238, 311–328 (2005).
Yu, Y. G., Wentzcovitch, R. M., Tsuchiya, T., Umemoto, K. & Weidner, D. J. First principles investigation of the postspinel transition in Mg2SiO4. Geophys. Res. Lett. 34, L10306 (2007).
Akaogi, M., Takayama, H., Kojitani, H., Kawaji, H. & Atake, T. Low-temperature heat capacities, entropies and enthalpies of Mg2SiO4 polymorphs, and α–β–γ and post-spinel phase relations at high pressure. Phys. Chem. Miner. 34, 169–183 (2007).
Ishii, T., Kojitani, H. & Akaogi, M. Post-spinel transitions in pyrolite and Mg2SiO4 and akimotoite–perovskite transition in MgSiO3: precise comparison by high-pressure high-temperature experiments with multi-sample cell technique. Earth Planet. Sci. Lett. 309, 185–197 (2011).
Ghosh, S. et al. Effect of water in depleted mantle on post-spinel transition and implication for 660 km seismic discontinuity. Earth Planet. Sci. Lett. 371, 103–111 (2013).
Hernández, E. R., Alfe, D. & Brodholt, J. The incorporation of water into lower-mantle perovskites: a first-principles study. Earth Planet. Sci. Lett. 364, 37–43 (2013).
Kojitani, H., Inoue, T. & Akaogi, M. Precise measurements of enthalpy of postspinel transition in Mg2SiO4 and application to the phase boundary calculation. J. Geophys. Res. Solid Earth 121, 729–742 (2016).
Ye, Y., Gu, C., Shim, S. H., Meng, Y. & Prakapenka, V. The postspinel boundary in pyrolitic compositions determined in the laser-heated diamond anvil cell. Geophys. Res. Lett. 41, 3833–3841 (2014).
Agius, M. R., Rychert, C. A., Harmon, N., Tharimena, S. & Kendall, J. M. A thin mantle transition zone beneath the equatorial Mid-Atlantic Ridge. Nature 589, 562–566 (2021).
Saki, M., Thomas, C., Nippress, S. E. & Lessing, S. Topography of upper mantle seismic discontinuities beneath the North Atlantic: the Azores, Canary and Cape Verde plumes. Earth Planet. Sci. Lett. 409, 193–202 (2015).
Ruan, A. et al. Crustal structure and mantle transition zone thickness beneath a hydrothermal vent at the ultra-slow spreading Southwest Indian Ridge (49°39′E): a supplementary study based on passive seismic receiver functions. Mar. Geophys. Res. 38, 39–46 (2017).
Agius, M. R., Rychert, C. A., Harmon, N. & Laske, G. Mapping the mantle transition zone beneath Hawaii from Ps receiver functions: evidence for a hot plume and cold mantle downwellings. Earth Planet. Sci. Lett. 474, 226–236 (2017).