Saturday, April 12, 2025
No menu items!
HomeNatureSeismic imaging of a basaltic Lesser Antilles slab from ancient tectonics

Seismic imaging of a basaltic Lesser Antilles slab from ancient tectonics

  • Fukao, Y., Obayashi, M., Inoue, H. & Nenbai, M. Subducting slabs stagnant in the mantle transition zone. J. Geophys. Res. Solid Earth 97, 4809–4822 (1992).

    Article 

    Google Scholar
     

  • Goes, S., Agrusta, R., van Hunen, J. & Garel, F. Subduction-transition zone interaction: a review. Geosphere 13, 644–664 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Goes, S., Yu, C., Ballmer, M. D., Yan, J. & van der Hilst, R. D. Compositional heterogeneity in the mantle transition zone. Nat. Rev. Earth Environ. 3, 533–550 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Tauzin, B., Waszek, L., Ballmer, M. D., Afonso, J. C. & Bodin, T. Basaltic reservoirs in the Earth’s mantle transition zone. Proc. Natl Acad. Sci. USA 119, e2209399119 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yan, J., Ballmer, M. D. & Tackley, P. J. The evolution and distribution of recycled oceanic crust in the Earth’s mantle: insight from geodynamic models. Earth Planet. Sci. Lett. 537, 116171 (2020).

    Article 

    Google Scholar
     

  • Braszus, B. et al. Subduction history of the Caribbean from upper-mantle seismic imaging and plate reconstruction. Nat. Commun. 12, 4211 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, Y.-W., Wu, J. & Goes, S. Lesser Antilles slab reconstruction reveals lateral slab transport under the Caribbean since 50 Ma. Earth Planet. Sci. Lett. 627, 118561 (2024).

    Article 

    Google Scholar
     

  • Dziewonski, A. M. & Anderson, D. L. Preliminary reference Earth model. Phys. Earth Planet. Inter. 25, 297–356 (1981).

    Article 
    ADS 

    Google Scholar
     

  • Ringwood, A. E. Composition and Petrology of the Earth’s Mantle (McGraw-Hill, 1975).

  • Ito, E. & Katsura, T. A temperature profile of the mantle transition zone. Geophys. Res. Lett. 16, 425–428 (1989).

    Article 
    ADS 

    Google Scholar
     

  • Lawrence, J. F. & Shearer, P. M. Imaging mantle transition zone thickness with SdSSS finite-frequency sensitivity kernels. Geophys. J. Int. 174, 143–158 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Niu, F., Kawakatsu, H. & Fukao, Y. Seismic evidence for a chemical heterogeneity in the midmantle: a strong and slightly dipping seismic reflector beneath the Mariana subduction zone. J. Geophys. Res. Solid Earth 108, 2419 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Waszek, L., Tauzin, B., Schmerr, N. C., Ballmer, M. D. & Afonso, J. C. A poorly mixed mantle transition zone and its thermal state inferred from seismic waves. Nat. Geosci. 14, 949–955 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Munch, F. D., Khan, A., Tauzin, B., van Driel, M. & Giardini, D. Seismological evidence for thermo-chemical heterogeneity in Earth’s continental mantle. Earth Planet. Sci. Lett. 539, 116240 (2020).

    Article 

    Google Scholar
     

  • Bissig, F., Khan, A. & Giardini, D. Evidence for basalt enrichment in the mantle transition zone from inversion of triplicated P- and S-waveforms. Earth Planet. Sci. Lett. 580, 117387 (2022).

    Article 

    Google Scholar
     

  • Conrad, C. P. & Lithgow-Bertelloni, C. How mantle slabs drive plate tectonics. Science 298, 207–209 (2002).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Bercovici, D. & Karato, S. I. Whole-mantle convection and the transition-zone water filter. Nature 425, 39–44 (2003).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Stixrude, L. & Lithgow-Bertelloni, C. Thermodynamics of the Earth’s mantle. Rev. Mineral. Geochem. 71, 465–484 (2010).

    Article 

    Google Scholar
     

  • Qin, Y., Singh, S. C., Grevemeyer, I., Marjanovic, M. & Roger Buck, W. Discovery of flat seismic reflections in the mantle beneath the young Juan de Fuca Plate. Nat. Commun. 11, 4122 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ohira, A. et al. Evidence for frozen melts in the mid-lithosphere detected from active-source seismic data. Sci. Rep. 7, 15770 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Naif, S., Key, K., Constable, S. & Evans, R. L. Melt-rich channel observed at the lithosphere–asthenosphere boundary. Nature 495, 356–359 (2013).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Stern, T. A. et al. A seismic reflection image for the base of a tectonic plate. Nature 518, 85–88 (2015).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Sim, S. J., Spiegelman, M., Stegman, D. R. & Wilson, C. The influence of spreading rate and permeability on melt focusing beneath mid-ocean ridges. Phys. Earth Planet. Inter. 304, 106486 (2020).

    Article 

    Google Scholar
     

  • Escartín, J. et al. Central role of detachment faults in accretion of slow-spreading oceanic lithosphere. Nature 455, 790–794 (2008).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Goes, S. et al. Project VoiLA: volatile recycling in the Lesser Antilles. Eos https://eos.org/science-updates/project-voila-the-volatile-recycling-in-the-lesser-antilles (2019).

  • Lindner, M. et al. Complex Martinique intermediate-depth earthquake reactivates early Atlantic break-up structures. Geophys. Res. Lett. 51, e2024GL108922 (2024).

    Article 

    Google Scholar
     

  • Frost, D. J. & Dolejš, D. Experimental determination of the effect of H2O on the 410-km seismic discontinuity. Earth Planet. Sci. Lett. 256, 182–195 (2007).

    Article 
    ADS 

    Google Scholar
     

  • van Benthem, S., Govers, R., Spakman, W. & Wortel, R. Tectonic evolution and mantle structure of the Caribbean. J. Geophys. Res. Solid Earth 118, 3019–3036 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Ishii, T., Kojitani, H. & Akaogi, M. Phase relations and mineral chemistry in pyrolitic mantle at 1600–2200 °C under pressures up to the uppermost lower mantle: phase transitions around the 660-km discontinuity and dynamics of upwelling hot plumes. Phys. Earth Planet. Inter. 274, 127–137 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Huang, J., Vanacore, E., Niu, F. & Levander, A. Mantle transition zone beneath the Caribbean-South American plate boundary and its tectonic implications. Earth Planet. Sci. Lett. 289, 105–111 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Muir, J. M. R., Zhang, F. & Brodholt, J. P. The effect of water on the post-spinel transition and evidence for extreme water contents at the bottom of the transition zone. Earth Planet. Sci. Lett. 565, 116909 (2021).

    Article 

    Google Scholar
     

  • Kubo, T. et al. Mechanisms and kinetics of the post-spinel transformation in Mg2SiO4. Phys. Earth Planet. Inter. 129, 153–171 (2002).

    Article 
    ADS 

    Google Scholar
     

  • Hirose, K. Phase transitions in pyrolitic mantle around 670-km depth: implications for upwelling of plumes from the lower mantle. J. Geophys. Res. Solid Earth 107, ECV 3-1–ECV 3–13 (2002).

    Article 

    Google Scholar
     

  • Chanyshev, A. et al. Depressed 660-km discontinuity caused by akimotoite–bridgmanite transition. Nature 601, 69–73 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hirose, K., Fei, Y., Ma, Y. & Mao, H.-K. The fate of subducted basaltic crust in the Earth’s lower mantle. Nature 397, 53–56 (1999).

    Article 
    ADS 

    Google Scholar
     

  • Wei, W., Ma, Z., Sun, N., Sun, D. & Tkachev, S. N. High pressure-temperature single-crystal elasticity of grossular: implications for the low-velocity layer in the bottom transition zone. Geophys. Res. Lett. 48, e2021GL093540 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Yu, C., Goes, S., Day, E. A. & van der Hilst, R. D. Seismic evidence for global basalt accumulation in the mantle transition zone. Sci. Adv. 9, eadg0095 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, J. & Gu, Y. J. Slab stagnation vs. penetration of Nazca subduction inferred from shear wave reflectivity. Earth Planet. Sci. Lett. 599, 117867 (2022).

    Article 

    Google Scholar
     

  • Feng, J., Yao, H., Wang, Y., Poli, P. & Mao, Z. Segregated oceanic crust trapped at the bottom mantle transition zone revealed from ambient noise interferometry. Nat. Commun. 12, 2531 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van Keken, P., Karato, S. & Yuen, D. Rheological control of oceanic crust separation in the transition zone. Geophys. Res. Lett. 23, 1821–1824 (1996).

    Article 
    ADS 

    Google Scholar
     

  • Gaherty, J. B. & Hager, B. H. Compositional vs. thermal buoyancy and the evolution of subducted lithosphere. Geophys. Res. Lett. 21, 141–144 (1994).

    Article 
    ADS 

    Google Scholar
     

  • van Rijsingen, E. M. et al. Ongoing tectonic subsidence in the Lesser Antilles subduction zone. Geophys. J. Int. 231, 319–326 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Allen, R. W. et al. The role of arc migration in the development of the Lesser Antilles: a new tectonic model for the Cenozoic evolution of the eastern Caribbean. Geology 47, 891–895 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Harris, C. W., Miller, M. S. & Porritt, R. W. Tomographic imaging of slab segmentation and deformation in the Greater Antilles. Geochem. Geophys. Geosyst. 19, 2292–2307 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Ballmer, M. D., Schmerr, N. C., Nakagawa, T. & Ritsema, J. Compositional mantle layering revealed by slab stagnation at ~1000-km depth. Sci. Adv. 1, e1500815 (2015).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hayes, G. P. et al. Slab2, a comprehensive subduction zone geometry model. Science 362, 58–61 (2018).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Amaru, M. Global Travel Time Tomography with 3-D Reference Models No. 274 (Utrecht University, 2007).

  • Bie, L. et al. Along-arc heterogeneity in local seismicity across the Lesser Antilles subduction zone from a dense ocean-bottom seismometer network. Seismol. Res. Lett. 91, 237–247 (2019).

    Article 

    Google Scholar
     

  • Bell, S. W., Forsyth, D. W. & Ruan, Y. Removing noise from the vertical component records of ocean-bottom seismometers: results from year one of the Cascadia Initiative. Bull. Seismol. Soc. Am. 105, 300–313 (2015).

    Article 

    Google Scholar
     

  • Crawford, W. C. & Webb, S. C. Identifying and removing tilt noise from low-frequency (<0.1 Hz) seafloor vertical seismic data. Bull. Seismol. Soc. Am. 90, 952–963 (2000).

    Article 

    Google Scholar
     

  • Rychert, C. A., Harmon, N. & Tharimena, S. Scattered wave imaging of the oceanic plate in Cascadia. Sci. Adv. 4, eaao1908 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chichester, B. et al. Seafloor sediment thickness beneath the VoiLA broad-band ocean-bottom seismometer deployment in the Lesser Antilles from P-to-S delay times. Geophys. J. Int. 223, 1758–1768 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Ruan, Y., Forsyth, D. W. & Bell, S. W. Marine sediment shear velocity structure from the ratio of displacement to pressure of Rayleigh waves at seafloor. J. Geophys. Res. Solid Earth 119, 6357–6371 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Nafe, J. E. & Drake, C. L. Variation with depth in shallow and deep water marine sediments of porosity, density and the velocities of compressional and shear waves. Geophysics 22, 523–552 (1957).

    Article 
    ADS 

    Google Scholar
     

  • Ligorria, J. P. & Charles, J. A. Iterative deconvolution and receiver-function estimation. Bull. Seismol. Soc. Am. 89, 1395–1400 (1999).

    Article 

    Google Scholar
     

  • Kennett, B. L., Engdahl, E. & Buland, R. Constraints on seismic velocities in the Earth from traveltimes. Geophys. J. Int. 122, 108–124 (1995).

    Article 
    ADS 

    Google Scholar
     

  • Melekhova, E. et al. Lateral variation in crustal structure along the Lesser Antilles arc from petrology of crustal xenoliths and seismic receiver functions. Earth Planet. Sci. Lett. 516, 12–24 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Schellart, W. P. Kinematics of subduction and subduction-induced flow in the upper mantle. J. Geophys. Res. Solid Earth 109, B07401 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Yang, J. & Faccenda, M. Intraplate volcanism originating from upwelling hydrous mantle transition zone. Nature 579, 88–91 (2020).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Zhu, H., Stern, R. J. & Yang, J. Seismic evidence for subduction-induced mantle flows underneath Middle America. Nat. Commun. 11, 2075 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kong, F., Gao, S. S., Liu, K. H. & Li, J. Potassic volcanism induced by mantle upwelling through a slab window: evidence from shear wave splitting analyses in Central Java. J. Geophys. Res. Solid Earth 127, e2021JB023719 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Sun, M., Yu, Y., Gao, S. S. & Liu, K. H. Stagnation and tearing of the subducting northwest Pacific slab. Geology 50, 676–680 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Schmid, C., Goes, S., van der Lee, S. & Giardini, D. Fate of the Cenozoic Farallon slab from a comparison of kinematic thermal modeling with tomographic images. Earth Planet. Sci. Lett. 204, 17–32 (2002).

    Article 
    ADS 

    Google Scholar
     

  • Müller, R. D. et al. A global plate model including lithospheric deformation along major rifts and orogens since the Triassic. Tectonics 38, 1884–1907 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Connolly, J. A. Computation of phase equilibria by linear programming: a tool for geodynamic modeling and its application to subduction zone decarbonation. Earth Planet. Sci. Lett. 236, 524–541 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Stixrude, L. & Lithgow-Bertelloni, C. Thermodynamics of mantle minerals – II. Phase equilibria. Geophys. J. Int. 184, 1180–1213 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Xu, W., Lithgow-Bertelloni, C., Stixrude, L. & Ritsema, J. The effect of bulk composition and temperature on mantle seismic structure. Earth Planet. Sci. Lett. 275, 70–79 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Kennett, B. Seismic Wave Propagation in Stratified Media (Cambridge Univ. Press, 1983).

  • Tong, P., Chen, C. W., Komatitsch, D., Basini, P. & Liu, Q. High-resolution seismic array imaging based on an SEM-FK hybrid method. Geophys. J. Int. 197, 369–395 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Tromp, J., Komatitsch, D. & Liu, Q. Spectral-element and adjoint methods in seismology. Commun. Comput. Phys. 3, 1–32 (2008).


    Google Scholar
     

  • Irifune, T. et al. The postspinel phase boundary in Mg2SiO4 determined by in situ X-ray diffraction. Science 279, 1698–1700 (1998).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Shim, S.-H., Duffy, T. S. & Shen, G. The post-spinel transformation in Mg2SiO4 and its relation to the 660-km seismic discontinuity. Nature 411, 571–574 (2001).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Katsura, T. et al. Post-spinel transition in Mg2SiO4 determined by high P–T in situ X-ray diffractometry. Phys. Earth Planet. Inter. 136, 11–24 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Fei, Y. et al. Experimentally determined postspinel transformation boundary in Mg2SiO4 using MgO as an internal pressure standard and its geophysical implications. J. Geophys. Res. Solid Earth 109, B02305 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Litasov, K., Ohtani, E., Sano, A., Suzuki, A. & Funakoshi, K. In situ X-ray diffraction study of post-spinel transformation in a peridotite mantle: implication for the 660-km discontinuity. Earth Planet. Sci. Lett. 238, 311–328 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Yu, Y. G., Wentzcovitch, R. M., Tsuchiya, T., Umemoto, K. & Weidner, D. J. First principles investigation of the postspinel transition in Mg2SiO4. Geophys. Res. Lett. 34, L10306 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Akaogi, M., Takayama, H., Kojitani, H., Kawaji, H. & Atake, T. Low-temperature heat capacities, entropies and enthalpies of Mg2SiO4 polymorphs, and α–β–γ and post-spinel phase relations at high pressure. Phys. Chem. Miner. 34, 169–183 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Ishii, T., Kojitani, H. & Akaogi, M. Post-spinel transitions in pyrolite and Mg2SiO4 and akimotoite–perovskite transition in MgSiO3: precise comparison by high-pressure high-temperature experiments with multi-sample cell technique. Earth Planet. Sci. Lett. 309, 185–197 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Ghosh, S. et al. Effect of water in depleted mantle on post-spinel transition and implication for 660 km seismic discontinuity. Earth Planet. Sci. Lett. 371, 103–111 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Hernández, E. R., Alfe, D. & Brodholt, J. The incorporation of water into lower-mantle perovskites: a first-principles study. Earth Planet. Sci. Lett. 364, 37–43 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Kojitani, H., Inoue, T. & Akaogi, M. Precise measurements of enthalpy of postspinel transition in Mg2SiO4 and application to the phase boundary calculation. J. Geophys. Res. Solid Earth 121, 729–742 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Ye, Y., Gu, C., Shim, S. H., Meng, Y. & Prakapenka, V. The postspinel boundary in pyrolitic compositions determined in the laser-heated diamond anvil cell. Geophys. Res. Lett. 41, 3833–3841 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Agius, M. R., Rychert, C. A., Harmon, N., Tharimena, S. & Kendall, J. M. A thin mantle transition zone beneath the equatorial Mid-Atlantic Ridge. Nature 589, 562–566 (2021).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Saki, M., Thomas, C., Nippress, S. E. & Lessing, S. Topography of upper mantle seismic discontinuities beneath the North Atlantic: the Azores, Canary and Cape Verde plumes. Earth Planet. Sci. Lett. 409, 193–202 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Ruan, A. et al. Crustal structure and mantle transition zone thickness beneath a hydrothermal vent at the ultra-slow spreading Southwest Indian Ridge (49°39′E): a supplementary study based on passive seismic receiver functions. Mar. Geophys. Res. 38, 39–46 (2017).

    Article 

    Google Scholar
     

  • Agius, M. R., Rychert, C. A., Harmon, N. & Laske, G. Mapping the mantle transition zone beneath Hawaii from Ps receiver functions: evidence for a hot plume and cold mantle downwellings. Earth Planet. Sci. Lett. 474, 226–236 (2017).

    Article 
    ADS 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments