Friday, August 1, 2025
No menu items!
HomeNatureSecuring the forest carbon sink for the European Union’s climate ambition

Securing the forest carbon sink for the European Union’s climate ambition

  • Mauser, H. Key Questions on Forests in the EU (European Forest Institute, 2021).

  • Ciais, P. et al. Carbon accumulation in European forests. Nat. Geosci. 1, 425–429 (2008).

    CAS 

    Google Scholar
     

  • Magnani, F. et al. The human footprint in the carbon cycle of temperate and boreal forests. Nature 447, 849–851 (2007).

    CAS 

    Google Scholar
     

  • Bellassen, V. et al. Reconstruction and attribution of the carbon sink of European forests between 1950 and 2000. Glob. Change Biol. 17, 3274–3292 (2011).


    Google Scholar
     

  • State of Europe’s Forests 2020 (Forest Europe, 2020).

  • Laudon, H., Mensah, A. A., Fridman, J., Näsholm, T. & Jämtgård, S. Swedish forest growth decline: a consequence of climate warming? For. Ecol. Manag. 565, 122052 (2024).


    Google Scholar
     

  • Korosuo, A. et al. The role of forests in the EU climate policy: are we on the right track? Carbon Balance Manag. 18, 15 (2023). This study shows that the EU forest sink is quickly developing away from the EU climate targets.


    Google Scholar
     

  • Gensior, A., Drexler, S., Fuß, R., Stümer, W. & Rüter, S. Emissions of Greenhouse Gases from Land Use, Land-use Change and forestry (LULUCF) (Thünen Institute, 2025).

  • Forzieri, G., Dakos, V., McDowell, N. G., Ramdane, A. & Cescatti, A. Emerging signals of declining forest resilience under climate change. Nature 608, 534–539 (2022). This study shows a diminishing forest resilience to disturbance, critical for shaping land-based climate-mitigation strategies.

    CAS 

    Google Scholar
     

  • Forzieri, G. et al. Emergent vulnerability to climate-driven disturbances in European forests. Nat. Commun. 12, 1081 (2021).

    CAS 

    Google Scholar
     

  • Senf, C., Buras, A., Zang, C. S., Rammig, A. & Seidl, R. Excess forest mortality is consistently linked to drought across Europe. Nat. Commun. 11, 6200 (2020). This study provides evidence that drought is an important driver of tree mortality at the European scale.

    CAS 

    Google Scholar
     

  • Forzieri, G. et al. Ecosystem heterogeneity is key to limiting the increasing climate-driven risks to European forests. One Earth 7, 2149–2164 (2024).


    Google Scholar
     

  • Ceccherini, G. et al. Abrupt increase in harvested forest area over Europe after 2015. Nature 583, 72–77 (2020).

    CAS 

    Google Scholar
     

  • Turubanova, S. et al. Tree canopy extent and height change in Europe, 2001–2021, quantified using Landsat data archive. Remote Sens. Environ. 298, 113797 (2023).


    Google Scholar
     

  • Senf, C. & Seidl, R. Mapping the forest disturbance regimes of Europe. Nat. Sustain. 4, 63–70 (2021).


    Google Scholar
     

  • Patacca, M. et al. Significant increase in natural disturbance impacts on European forests since 1950. Glob. Change Biol. 29, 1359–1376 (2023).

    CAS 

    Google Scholar
     

  • Hartmann, H. et al. Climate change risks to global forest health: emergence of unexpected events of elevated tree mortality worldwide. Annu. Rev. Plant Biol. 73, 673–702 (2022).

    CAS 

    Google Scholar
     

  • Vilén, T. et al. Reconstructed forest age structure in Europe 1950–2010. For. Ecol. Manag. 286, 203–218 (2012).


    Google Scholar
     

  • Nabuurs, G.-J. et al. First signs of carbon sink saturation in European forest biomass. Nat. Clim. Change 3, 792–796 (2013). This article shows the first signs of saturation of the forest sink in Europe and identifies the causes.

    CAS 

    Google Scholar
     

  • Lerink, B. J. W. et al. How much wood can we expect from European forests in the near future? Forestry 96, 434–447 (2023).


    Google Scholar
     

  • Camia A. et al. The Use of Woody Biomass for Energy Purposes in the EU (2021).

  • Hlásny, T. et al. Bark beetle outbreaks in Europe: state of knowledge and ways forward for management. Curr. For. Rep. 7, 138–165 (2021).


    Google Scholar
     

  • Dosio, A., Spinoni, J. & Migliavacca, M. Record-breaking and unprecedented compound hot and dry summers in Europe under different emission scenarios. Environ. Res. Clim. 2, 045009 (2023).


    Google Scholar
     

  • Bastos, A. et al. Vulnerability of European ecosystems to two compound dry and hot summers in 2018 and 2019. Earth Syst. Dyn. 12, 1015–1035 (2021).


    Google Scholar
     

  • Ciais, P. et al. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437, 529–533 (2005). This paper shows continental evidence of the reduction of primary production in response to the 2003 heatwave and drought.

    CAS 

    Google Scholar
     

  • Reichstein, M. et al. Deep learning and process understanding for data-driven Earth system science. Nature 566, 195–204 (2019). This article reports on the importance of deep learning and hybrid modelling for advancing in Earth system science.

    CAS 

    Google Scholar
     

  • Sippel, S. et al. Contrasting and interacting changes in simulated spring and summer carbon cycle extremes in European ecosystems. Environ. Res. Lett. 12, 075006 (2017).


    Google Scholar
     

  • van der Woude, A. M. et al. Temperature extremes of 2022 reduced carbon uptake by forests in Europe. Nat. Commun. 14, 6218 (2023).


    Google Scholar
     

  • El Garroussi, S., Di Giuseppe, F., Barnard, C. & Wetterhall, F. Europe faces up to tenfold increase in extreme fires in a warming climate. npj Clim. Atmos. Sci. 7, 30 (2024).


    Google Scholar
     

  • Seidl, R. et al. Invasive alien pests threaten the carbon stored in Europe’s forests. Nat. Commun. 9, 1626 (2018).


    Google Scholar
     

  • European Climate Risk Assessment (EEA, 2024).

  • Lugato, E., Lavallee, J. M., Haddix, M. L., Panagos, P. & Cotrufo, M. F. Different climate sensitivity of particulate and mineral-associated soil organic matter. Nat. Geosci. 14, 295–300 (2021).

    CAS 

    Google Scholar
     

  • Mayer, M. et al. Influence of forest management activities on soil organic carbon stocks: a knowledge synthesis. For. Ecol. Manag. 466, 118127 (2020). This paper provides a complete review on the effects of forest management on soil organic carbon.


    Google Scholar
     

  • Wang, M. et al. Responses of soil organic carbon to climate extremes under warming across global biomes. Nat. Clim. Change 14, 98–105 (2024).

    CAS 

    Google Scholar
     

  • Eisenhauer, N. et al. A belowground perspective on the nexus between biodiversity change, climate change, and human well-being. J. Sustain. Agric. Environ. 3, e212108 (2024).


    Google Scholar
     

  • Gren, I.-M. & Aklilu, A. Z. Policy design for forest carbon sequestration: a review of the literature. For. Policy Econ. 70, 128–136 (2016).


    Google Scholar
     

  • Bowditch, E. et al. Application of climate-smart forestry—forest manager response to the relevance of European definition and indicators. Trees For. People 9, 100313 (2022).


    Google Scholar
     

  • Buma, B. et al. Expert review of the science underlying nature-based climate solutions. Nat. Clim. Change 14, 402–406 (2024).


    Google Scholar
     

  • Novick, K. A. et al. We need a solid scientific basis for nature-based climate solutions in the United States. Proc. Natl Acad. Sci. USA 121, e2318505121 (2024).

    CAS 

    Google Scholar
     

  • Brandt, M. et al. High-resolution sensors and deep learning models for tree resource monitoring. Nat. Rev. Electr. Eng. https://doi.org/10.1038/s44287-024-00116-8 (2024).

  • Viana-Soto, A. & Senf, C. The European Forest Disturbance Atlas: a forest disturbance monitoring system using the Landsat archive. Earth Syst. Sci. Data Discuss. 2024, 1–42 (2024). The latest continental-scale characterization of Europe’s forest disturbance regimes, disturbance agents and their changes over time.


    Google Scholar
     

  • Cavender-Bares, J. et al. Integrating remote sensing with ecology and evolution to advance biodiversity conservation. Nat. Ecol. Evol. 6, 506–519 (2022).


    Google Scholar
     

  • Lang, N., Jetz, W., Schindler, K. & Wegner, J. D. A high-resolution canopy height model of the Earth. Nat. Ecol. Evol. 7, 1778–1789 (2023).


    Google Scholar
     

  • Ceccherini, G. et al. Spaceborne LiDAR reveals the effectiveness of European Protected Areas in conserving forest height and vertical structure. Commun. Earth Environ. 4, 97 (2023).


    Google Scholar
     

  • Duncanson, L. et al. Aboveground biomass density models for NASA’s Global Ecosystem Dynamics Investigation (GEDI) LiDAR mission. Remote Sens. Environ. 270, 112845 (2022).


    Google Scholar
     

  • Miettinen, J. et al. Demonstration of large area forest volume and primary production estimation approach based on Sentinel-2 imagery and process based ecosystem modelling. Int. J. Remote Sens. 42, 9467–9489 (2021).


    Google Scholar
     

  • Santoro, M., Cartus, O. & Fransson, J. E. S. Dynamics of the Swedish forest carbon pool between 2010 and 2015 estimated from satellite L-band SAR observations. Remote Sens. Environ. 270, 112846 (2022).


    Google Scholar
     

  • Demol, M. et al. Estimating forest above-ground biomass with terrestrial laser scanning: current status and future directions. Methods Ecol. Evol. 13, 1628–1639 (2022).


    Google Scholar
     

  • Senf, C. & Seidl, R. Storm and fire disturbances in Europe: distribution and trends. Glob. Change Biol. 27, 3605–3619 (2021).

    CAS 

    Google Scholar
     

  • Network, I. T. M. Towards a global understanding of tree mortality. New Phytol.https://doi.org/10.1111/nph.20407 (2025). A recent review on the research needed to better monitor and understand tree mortality.

  • Forzieri, G. et al. The Database of European Forest Insect and Disease Disturbances: DEFID2. Glob. Change Biol. 29, 6040–6065 (2023).

    CAS 

    Google Scholar
     

  • Forzieri, G. et al. A spatially explicit database of wind disturbances in European forests over the period 2000–2018. Earth Syst. Sci. Data 12, 257–276 (2020).


    Google Scholar
     

  • Schiefer, F. et al. UAV-based reference data for the prediction of fractional cover of standing deadwood from Sentinel time series. ISPRS J. Photogramm. Remote Sens. 8, 100034 (2023).


    Google Scholar
     

  • Skidmore, A. K. et al. Priority list of biodiversity metrics to observe from space. Nat. Ecol. Evol. 5, 896–906 (2021).


    Google Scholar
     

  • Torresani, M. et al. Reviewing the spectral variation hypothesis: twenty years in the tumultuous sea of biodiversity estimation by remote sensing. Ecol. Inform. 82, 102702 (2024).


    Google Scholar
     

  • Pacheco-Labrador, J. et al. Challenging the link between functional and spectral diversity with radiative transfer modeling and data. Remote Sens. Environ. 280, 113170 (2022).


    Google Scholar
     

  • de Conto, T., Armston, J. & Dubayah, R. Characterizing the structural complexity of the Earth’s forests with spaceborne lidar. Nat. Commun. 15, 8116 (2024).


    Google Scholar
     

  • Blickensdörfer, L., Oehmichen, K., Pflugmacher, D., Kleinschmit, B. & Hostert, P. National tree species mapping using Sentinel-1/2 time series and German National Forest Inventory data. Remote Sens. Environ. 304, 114069 (2024).


    Google Scholar
     

  • Harris, N. L. et al. Global maps of twenty-first century forest carbon fluxes. Nat. Clim. Change 11, 234–240 (2021).


    Google Scholar
     

  • Lesiv, M. et al. Global forest management data for 2015 at a 100 m resolution. Sci. Data 9, 199 (2022).


    Google Scholar
     

  • Bonannella, C. et al. Forest tree species distribution for Europe 2000–2020: mapping potential and realized distributions using spatiotemporal machine learning. PeerJ 10, e13728 (2022).


    Google Scholar
     

  • Santoro, M. et al. Global estimation of above-ground biomass from spaceborne C-band scatterometer observations aided by LiDAR metrics of vegetation structure. Remote Sens. Environ. 279, 113114 (2022).


    Google Scholar
     

  • Duncanson, L. et al. Spatial resolution for forest carbon maps. Science 387, 370–371 (2025). Potentials and limitations of forest biomass and carbon maps, and the interplay between uncertainty and the spatial resolution of the maps.

    CAS 

    Google Scholar
     

  • Schwartz, M. et al. FORMS: forest multiple source height, wood volume, and biomass maps in France at 10 to 30 m resolution based on Sentinel-1, Sentinel-2, and Global Ecosystem Dynamics Investigation (GEDI) data with a deep learning approach. Earth Syst. Sci. Data 15, 4927–4945 (2023).


    Google Scholar
     

  • Ferretti, M. et al. Advancing forest inventorying and monitoring. Ann. Forest Sci. 81, 6 (2024).


    Google Scholar
     

  • Calders, K. et al. Laser scanning reveals potential underestimation of biomass carbon in temperate forest. Ecol. Solut. Evid. 3, e12197 (2022).


    Google Scholar
     

  • Gessler, A. et al. Finding the balance between open access to forest data while safeguarding the integrity of National Forest Inventory-derived information. New Phytol. 242, 344–346 (2024). The article discusses the need to access private forest data to improve forest monitoring.


    Google Scholar
     

  • Päivinen, R. et al. Ensure forest-data integrity for climate change studies. Nat. Clim. Change 13, 495–496 (2023).


    Google Scholar
     

  • Schadauer, K. et al. Access to exact National Forest Inventory plot locations must be carefully evaluated. New Phytol. 242, 347–350 (2024).


    Google Scholar
     

  • Kairouz, P. et al. Advances and open problems in federated learning. Found. Trends Mach. Learn. 14, 1–210 (2021).


    Google Scholar
     

  • Schlegel, M., Scheliga, D., Sattler, K.-U., Seeland, M. & Mäder, P. Collaboration management for federated learning. In IEEE 40th Int. Conf. Data Engineering Workshops (ICDEW), 291–300 (2024).

  • Bonan, G. B. et al. Reimagining Earth in the Earth system. J. Adv. Model. Earth Syst. 16, e2023MS004017 (2024).


    Google Scholar
     

  • Scheel, M., Lindeskog, M., Smith, B., Suvanto, S. & Pugh, T. A. M. Increased Central European forest mortality explained by higher harvest rates driven by enhanced productivity. Environ. Res. Lett. 17, 114007 (2022).


    Google Scholar
     

  • Marie, G. et al. Simulating bark beetle outbreak dynamics and their influence on carbon balance estimates with ORCHIDEE r7791. EGUsphere 2023, 1–35 (2023).


    Google Scholar
     

  • Sabot, M. E. B. et al. Plant profit maximization improves predictions of European forest responses to drought. New Phytol. 226, 1638–1655 (2020).


    Google Scholar
     

  • Marie, G. et al. Simulating Ips typographus L. outbreak dynamics and their influence on carbon balance estimates with ORCHIDEE r8627. Geosci. Model Dev. 17, 8023–8047 (2024).


    Google Scholar
     

  • Kautz, M., Anthoni, P., Meddens, A. J. H., Pugh, T. A. M. & Arneth, A. Simulating the recent impacts of multiple biotic disturbances on forest carbon cycling across the United States. Glob. Change Biol. 24, 2079–2092 (2018).


    Google Scholar
     

  • Hanbury-Brown, A. R., Powell, T. L., Muller-Landau, H. C., Wright, S. J. & Kueppers, L. M. Simulating environmentally-sensitive tree recruitment in vegetation demographic models. New Phytol. 235, 78–93 (2022).


    Google Scholar
     

  • Buotte, P. C. et al. Capturing functional strategies and compositional dynamics in vegetation demographic models. Biogeosciences 18, 4473–4490 (2021).

    CAS 

    Google Scholar
     

  • Pilli, R., Alkama, R., Cescatti, A., Kurz, W. A. & Grassi, G. The European forest carbon budget under future climate conditions and current management practices. Biogeosciences 19, 3263–3284 (2022).


    Google Scholar
     

  • Rammer, W. et al. The individual-based forest landscape and disturbance model iLand: overview, progress, and outlook. Ecol. Model. 495, 110785 (2024).


    Google Scholar
     

  • Mahecha, M. D. et al. Detecting impacts of extreme events with ecological in situ monitoring networks. Biogeosciences 14, 4255–4277 (2017).


    Google Scholar
     

  • Nelson, J. A. et al. X-BASE: the first terrestrial carbon and water flux products from an extended data-driven scaling framework, FLUXCOM-X. EGUsphere 2024, 1–51 (2024).


    Google Scholar
     

  • Jung, M. et al. Scaling carbon fluxes from eddy covariance sites to globe: synthesis and evaluation of the FLUXCOM approach. Biogeosciences 17, 1343–1365 (2020).

    CAS 

    Google Scholar
     

  • Besnard, S. et al. Mapping global forest age from forest inventories, biomass and climate data. Earth Syst. Sci. Data 13, 4881–4896 (2021).


    Google Scholar
     

  • Son, R. et al. Integration of a deep-learning-based fire model into a global land surface model. J. Adv. Model. Earth Syst. 16, e2023MS003710 (2024).


    Google Scholar
     

  • ElGhawi, R. et al. Hybrid modeling of evapotranspiration: inferring stomatal and aerodynamic resistances using combined physics-based and machine learning. Environ. Res. Lett. 18, 034039 (2023).


    Google Scholar
     

  • Prapas, I. et al. TeleViT: teleconnection-driven transformers improve subseasonal to seasonal wildfire forecasting. Proc. IEEE/CVF Int. Conf. Computer Vision, 3754–3759 (2023).

  • Bauer, P., Stevens, B. & Hazeleger, W. A digital twin of Earth for the green transition. Nat. Clim. Change 11, 80–83 (2021).


    Google Scholar
     

  • Seneviratne, S. et al. Weather and Climate Extreme Events in a Changing Climate (Cambridge Univ. Press, 2021).

  • Suarez-Gutierrez, L., Müller, W. A. & Marotzke, J. Extreme heat and drought typical of an end-of-century climate could occur over Europe soon and repeatedly. Commun. Earth Environ. 4, 415 (2023).


    Google Scholar
     

  • Senf, C. & Seidl, R. Persistent impacts of the 2018 drought on forest disturbance regimes in Europe. Biogeosciences 18, 5223–5230 (2021).


    Google Scholar
     

  • Dosio, A., Migliavacca, M. & Maraun, D. How fast is climate changing? One generation is sufficient for unfamiliar heatwave characteristics to emerge in Europe. Climatic Change 178, 26 (2025).


    Google Scholar
     

  • Seidl, R. et al. Forest disturbances under climate change. Nat. Clim. Change 7, 395–402 (2017).


    Google Scholar
     

  • Luyssaert, S. et al. Trade-offs in using European forests to meet climate objectives. Nature 562, 259–262 (2018). A modelling study that concludes the need to be cautious when envisioning the use of forest for climate mitigation.

    CAS 

    Google Scholar
     

  • Layritz, L. S. et al. Disentangling future effects of climate change and forest disturbance on vegetation composition and land-surface properties of the boreal forest. EGUsphere 2024, 1–36 (2024).


    Google Scholar
     

  • Suvanto, S. et al. Understanding Europe’s forest harvesting regimes. Earths Future 13, e2024EF005225 (2025).


    Google Scholar
     

  • Seidl, R. & Senf, C. Changes in planned and unplanned canopy openings are linked in Europe’s forests. Nat. Commun. 15, 4741 (2024).

    CAS 

    Google Scholar
     

  • Anderegg, W. R. L., Kane, J. M. & Anderegg, L. D. L. Consequences of widespread tree mortality triggered by drought and temperature stress. Nat. Clim. Change 3, 30–36 (2013).


    Google Scholar
     

  • Messier, C. et al. For the sake of resilience and multifunctionality, let’s diversify planted forests! Conserv. Lett. 15, e12829 (2022).


    Google Scholar
     

  • Jactel, H., Moreira, X. & Castagneyrol, B. Tree diversity and forest resistance to insect pests: patterns, mechanisms, and prospects. Annu. Rev. Entomol. 66, 277–296 (2021).

    CAS 

    Google Scholar
     

  • Liu, D., Wang, T., Peñuelas, J. & Piao, S. Drought resistance enhanced by tree species diversity in global forests. Nat. Geosci. 15, 800–804 (2022).

    CAS 

    Google Scholar
     

  • Wessely, J. et al. A climate-induced tree species bottleneck for forest management in Europe. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-024-02406-8 (2024). Climate change is reducing silviculture options and may limit the viability of creating new mixed forest owing to the loss of climate-compatible tree species.

  • del Campo, A. D. et al. Assessing reforestation failure at the project scale: the margin for technical improvement under harsh conditions. A case study in a Mediterranean dryland. Sci. Total Environ. 796, 148952 (2021).


    Google Scholar
     

  • Mauri, A. et al. Assisted tree migration can reduce but not avert the decline of forest ecosystem services in Europe. Glob. Environ. Change 80, 102676 (2023).


    Google Scholar
     

  • Mahecha, M. D. et al. Biodiversity and climate extremes: known interactions and research gaps. Earths Future 12, e2023EF003963 (2024). The article discusses the importance of improving understanding of the role of biodiversity to buffer climate extremes.


    Google Scholar
     

  • Mahecha, M. D. et al. Biodiversity loss and climate extremes—study the feedbacks. Nature 612, 30–32 (2022).


    Google Scholar
     

  • Jucker, T., Bouriaud, O., Avacaritei, D. & Coomes, D. A. Stabilizing effects of diversity on aboveground wood production in forest ecosystems: linking patterns and processes. Ecol. Lett. 17, 1560–1569 (2014).


    Google Scholar
     

  • Müller, J. et al. Enhancing the structural diversity between forest patches—a concept and real-world experiment to study biodiversity, multifunctionality and forest resilience across spatial scales. Glob. Change Biol. 29, 1437–1450 (2023).


    Google Scholar
     

  • Jactel, H. et al. Tree diversity drives forest stand resistance to natural disturbances. Curr. For. Rep. 3, 223–243 (2017).


    Google Scholar
     

  • Vangi, E. et al. Stand age diversity (and more than climate change) affects forests’ resilience and stability, although unevenly. J. Environ. Manag. 366, 121822 (2024).

    CAS 

    Google Scholar
     

  • Mäkelä, A. et al. Effect of forest management choices on carbon sequestration and biodiversity at national scale. Ambio 52, 1737–1756 (2023).


    Google Scholar
     

  • Blattert, C. et al. Climate targets in European timber-producing countries conflict with goals on forest ecosystem services and biodiversity. Commun. Earth Environ. 4, 119 (2023).


    Google Scholar
     

  • Leng, Y. et al. Forest aging limits future carbon sink in China. One Earth 7, 822–834 (2024).


    Google Scholar
     

  • Senf, C., Sebald, J. & Seidl, R. Increasing canopy mortality affects the future demographic structure of Europe’s forests. One Earth 4, 749–755 (2021).


    Google Scholar
     

  • Pan, Y., Birdsey, R. A. & Phillips, O. L. New pathways for reducing global illegal logging. For. Ecol. Manag. 568, 122114 (2024).


    Google Scholar
     

  • Felton, A. et al. Varying rotation lengths in northern production forests: Implications for habitats provided by retention and production trees. Ambio 46, 324–334 (2017).

    CAS 

    Google Scholar
     

  • Himes, A., Betts, M., Messier, C. & Seymour, R. Perspectives: thirty years of triad forestry, a critical clarification of theory and recommendations for implementation and testing. For. Ecol. Manag. 510, 120103 (2022).


    Google Scholar
     

  • Vos, M. A. E. et al. The sustainability of timber and biomass harvest in perspective of forest nutrient uptake and nutrient stocks. For. Ecol. Manag. 530, 120791 (2023).


    Google Scholar
     

  • Rougieux, P., Pilli, R., Blujdea, V., Mansuy, N. & Mubareka, S. B. Simulating Future Wood Consumption and the Impacts on Europe’s Forest Sink to 2070 (2024).

  • Soimakallio, S. et al. Closing an open balance: the impact of increased tree harvest on forest carbon. Glob. Change Biol. Bioenergy 14, 989–1000 (2022).

    CAS 

    Google Scholar
     

  • Daigneault, A. et al. How the future of the global forest sink depends on timber demand, forest management, and carbon policies. Glob. Environ. Change 76, 102582 (2022).


    Google Scholar
     

  • Peng, L., Searchinger, T. D., Zionts, J. & Waite, R. The carbon costs of global wood harvests. Nature 620, 110–115 (2023).

    CAS 

    Google Scholar
     

  • Rougieux, P. et al. Pruning the wood economy or intensifying harvest on a smaller area to increase the EU forest carbon sink. Preprint at SSRN https://doi.org/10.2139/ssrn.5027118 (2024).

  • Martin, A. R., Domke, G. M., Doraisami, M. & Thomas, S. C. Carbon fractions in the world’s dead wood. Nat. Commun. 12, 889 (2021).

    CAS 

    Google Scholar
     

  • Mansuy, N. et al. Reconciling the different uses and values of deadwood in the European Green Deal. One Earth 7, 1542–1558 (2024).


    Google Scholar
     

  • Pan, Y. et al. The enduring world forest carbon sink. Nature 631, 563–569 (2024). A recent assessment of the world forest sink detailed by pool, regions and forest types.

    CAS 

    Google Scholar
     

  • Larjavaara, M. et al. Deadwood and Fire Risk in Europe (Publications Office of the European Union, 2023).

  • Dijkstra, J., Durrant, T., San-Miguel-Ayanz, J. & Veraverbeke, S. Anthropogenic and lightning fire incidence and burned area in Europer. Land 11, 651 (2022).


    Google Scholar
     

  • Orgiazzi, A., Ballabio, C., Panagos, P., Jones, A. & Fernández-Ugalde, O. LUCAS Soil, the largest expandable soil dataset for Europe: a review. Eur. J. Soil Sci. 69, 140–153 (2018).


    Google Scholar
     

  • Felton, A., Belyazid, S., Eggers, J., Nordström, E.-M. & Öhman, K. Climate change adaptation and mitigation strategies for production forests: trade-offs, synergies, and uncertainties in biodiversity and ecosystem services delivery in Northern Europe. Ambio 53, 1–16 (2024).


    Google Scholar
     

  • Barnes, M. L. et al. A century of reforestation reduced anthropogenic warming in the eastern United States. Earths Future 12, e2023EF003663 (2024).


    Google Scholar
     

  • Novick, K. A. & Barnes, M. L. A practical exploration of land cover impacts on surface and air temperature when they are most consequential. Environ. Res. Clim. 2, 025007 (2023).


    Google Scholar
     

  • Luyssaert, S. et al. Land management and land-cover change have impacts of similar magnitude on surface temperature. Nat. Clim. Change 4, 389–393 (2014).


    Google Scholar
     

  • Hoek van Dijke, A. J. et al. Shifts in regional water availability due to global tree restoration. Nat. Geosci. 15, 363–368 (2022).

    CAS 

    Google Scholar
     

  • Meier, R. et al. Empirical estimate of forestation-induced precipitation changes in Europe. Nat. Geosci. 14, 473–478 (2021).

    CAS 

    Google Scholar
     

  • Li, W. et al. Widespread increasing vegetation sensitivity to soil moisture. Nat. Commun. 13, 3959 (2022).

    CAS 

    Google Scholar
     

  • Chen, Z., Wang, W., Cescatti, A. & Forzieri, G. Climate-driven vegetation greening further reduces water availability in drylands. Glob. Change Biol. 29, 1628–1647 (2023).

    CAS 

    Google Scholar
     

  • Graf, A. et al. Joint optimization of land carbon uptake and albedo can help achieve moderate instantaneous and long-term cooling effects. Commun. Earth Environ. 4, 298 (2023).


    Google Scholar
     

  • Stoy, P. C. et al. The global distribution of paired eddy covariance towers. Preprint at bioRxiv https://doi.org/10.1101/2023.03.03.530958 (2023).

  • Mubareka, S. et al. The role of scientists in EU forest-related policy in the Green Deal era. One Earth 5, 10–13 (2022).


    Google Scholar
     

  • Migliavacca, M. & Ceccherini, G. Data and code for the reproducible workflow of Migliavacca et al., 2025. Securing the forest carbon sink for the European Union’s climate ambition. Zenodo https://doi.org/10.5281/zenodo.14900132 (2025).

  • RELATED ARTICLES

    Most Popular

    Recent Comments