Mauser, H. Key Questions on Forests in the EU (European Forest Institute, 2021).
Ciais, P. et al. Carbon accumulation in European forests. Nat. Geosci. 1, 425–429 (2008).
Magnani, F. et al. The human footprint in the carbon cycle of temperate and boreal forests. Nature 447, 849–851 (2007).
Bellassen, V. et al. Reconstruction and attribution of the carbon sink of European forests between 1950 and 2000. Glob. Change Biol. 17, 3274–3292 (2011).
State of Europe’s Forests 2020 (Forest Europe, 2020).
Laudon, H., Mensah, A. A., Fridman, J., Näsholm, T. & Jämtgård, S. Swedish forest growth decline: a consequence of climate warming? For. Ecol. Manag. 565, 122052 (2024).
Korosuo, A. et al. The role of forests in the EU climate policy: are we on the right track? Carbon Balance Manag. 18, 15 (2023). This study shows that the EU forest sink is quickly developing away from the EU climate targets.
Gensior, A., Drexler, S., Fuß, R., Stümer, W. & Rüter, S. Emissions of Greenhouse Gases from Land Use, Land-use Change and forestry (LULUCF) (Thünen Institute, 2025).
Forzieri, G., Dakos, V., McDowell, N. G., Ramdane, A. & Cescatti, A. Emerging signals of declining forest resilience under climate change. Nature 608, 534–539 (2022). This study shows a diminishing forest resilience to disturbance, critical for shaping land-based climate-mitigation strategies.
Forzieri, G. et al. Emergent vulnerability to climate-driven disturbances in European forests. Nat. Commun. 12, 1081 (2021).
Senf, C., Buras, A., Zang, C. S., Rammig, A. & Seidl, R. Excess forest mortality is consistently linked to drought across Europe. Nat. Commun. 11, 6200 (2020). This study provides evidence that drought is an important driver of tree mortality at the European scale.
Forzieri, G. et al. Ecosystem heterogeneity is key to limiting the increasing climate-driven risks to European forests. One Earth 7, 2149–2164 (2024).
Ceccherini, G. et al. Abrupt increase in harvested forest area over Europe after 2015. Nature 583, 72–77 (2020).
Turubanova, S. et al. Tree canopy extent and height change in Europe, 2001–2021, quantified using Landsat data archive. Remote Sens. Environ. 298, 113797 (2023).
Senf, C. & Seidl, R. Mapping the forest disturbance regimes of Europe. Nat. Sustain. 4, 63–70 (2021).
Patacca, M. et al. Significant increase in natural disturbance impacts on European forests since 1950. Glob. Change Biol. 29, 1359–1376 (2023).
Hartmann, H. et al. Climate change risks to global forest health: emergence of unexpected events of elevated tree mortality worldwide. Annu. Rev. Plant Biol. 73, 673–702 (2022).
Vilén, T. et al. Reconstructed forest age structure in Europe 1950–2010. For. Ecol. Manag. 286, 203–218 (2012).
Nabuurs, G.-J. et al. First signs of carbon sink saturation in European forest biomass. Nat. Clim. Change 3, 792–796 (2013). This article shows the first signs of saturation of the forest sink in Europe and identifies the causes.
Lerink, B. J. W. et al. How much wood can we expect from European forests in the near future? Forestry 96, 434–447 (2023).
Camia A. et al. The Use of Woody Biomass for Energy Purposes in the EU (2021).
Hlásny, T. et al. Bark beetle outbreaks in Europe: state of knowledge and ways forward for management. Curr. For. Rep. 7, 138–165 (2021).
Dosio, A., Spinoni, J. & Migliavacca, M. Record-breaking and unprecedented compound hot and dry summers in Europe under different emission scenarios. Environ. Res. Clim. 2, 045009 (2023).
Bastos, A. et al. Vulnerability of European ecosystems to two compound dry and hot summers in 2018 and 2019. Earth Syst. Dyn. 12, 1015–1035 (2021).
Ciais, P. et al. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437, 529–533 (2005). This paper shows continental evidence of the reduction of primary production in response to the 2003 heatwave and drought.
Reichstein, M. et al. Deep learning and process understanding for data-driven Earth system science. Nature 566, 195–204 (2019). This article reports on the importance of deep learning and hybrid modelling for advancing in Earth system science.
Sippel, S. et al. Contrasting and interacting changes in simulated spring and summer carbon cycle extremes in European ecosystems. Environ. Res. Lett. 12, 075006 (2017).
van der Woude, A. M. et al. Temperature extremes of 2022 reduced carbon uptake by forests in Europe. Nat. Commun. 14, 6218 (2023).
El Garroussi, S., Di Giuseppe, F., Barnard, C. & Wetterhall, F. Europe faces up to tenfold increase in extreme fires in a warming climate. npj Clim. Atmos. Sci. 7, 30 (2024).
Seidl, R. et al. Invasive alien pests threaten the carbon stored in Europe’s forests. Nat. Commun. 9, 1626 (2018).
European Climate Risk Assessment (EEA, 2024).
Lugato, E., Lavallee, J. M., Haddix, M. L., Panagos, P. & Cotrufo, M. F. Different climate sensitivity of particulate and mineral-associated soil organic matter. Nat. Geosci. 14, 295–300 (2021).
Mayer, M. et al. Influence of forest management activities on soil organic carbon stocks: a knowledge synthesis. For. Ecol. Manag. 466, 118127 (2020). This paper provides a complete review on the effects of forest management on soil organic carbon.
Wang, M. et al. Responses of soil organic carbon to climate extremes under warming across global biomes. Nat. Clim. Change 14, 98–105 (2024).
Eisenhauer, N. et al. A belowground perspective on the nexus between biodiversity change, climate change, and human well-being. J. Sustain. Agric. Environ. 3, e212108 (2024).
Gren, I.-M. & Aklilu, A. Z. Policy design for forest carbon sequestration: a review of the literature. For. Policy Econ. 70, 128–136 (2016).
Bowditch, E. et al. Application of climate-smart forestry—forest manager response to the relevance of European definition and indicators. Trees For. People 9, 100313 (2022).
Buma, B. et al. Expert review of the science underlying nature-based climate solutions. Nat. Clim. Change 14, 402–406 (2024).
Novick, K. A. et al. We need a solid scientific basis for nature-based climate solutions in the United States. Proc. Natl Acad. Sci. USA 121, e2318505121 (2024).
Brandt, M. et al. High-resolution sensors and deep learning models for tree resource monitoring. Nat. Rev. Electr. Eng. https://doi.org/10.1038/s44287-024-00116-8 (2024).
Viana-Soto, A. & Senf, C. The European Forest Disturbance Atlas: a forest disturbance monitoring system using the Landsat archive. Earth Syst. Sci. Data Discuss. 2024, 1–42 (2024). The latest continental-scale characterization of Europe’s forest disturbance regimes, disturbance agents and their changes over time.
Cavender-Bares, J. et al. Integrating remote sensing with ecology and evolution to advance biodiversity conservation. Nat. Ecol. Evol. 6, 506–519 (2022).
Lang, N., Jetz, W., Schindler, K. & Wegner, J. D. A high-resolution canopy height model of the Earth. Nat. Ecol. Evol. 7, 1778–1789 (2023).
Ceccherini, G. et al. Spaceborne LiDAR reveals the effectiveness of European Protected Areas in conserving forest height and vertical structure. Commun. Earth Environ. 4, 97 (2023).
Duncanson, L. et al. Aboveground biomass density models for NASA’s Global Ecosystem Dynamics Investigation (GEDI) LiDAR mission. Remote Sens. Environ. 270, 112845 (2022).
Miettinen, J. et al. Demonstration of large area forest volume and primary production estimation approach based on Sentinel-2 imagery and process based ecosystem modelling. Int. J. Remote Sens. 42, 9467–9489 (2021).
Santoro, M., Cartus, O. & Fransson, J. E. S. Dynamics of the Swedish forest carbon pool between 2010 and 2015 estimated from satellite L-band SAR observations. Remote Sens. Environ. 270, 112846 (2022).
Demol, M. et al. Estimating forest above-ground biomass with terrestrial laser scanning: current status and future directions. Methods Ecol. Evol. 13, 1628–1639 (2022).
Senf, C. & Seidl, R. Storm and fire disturbances in Europe: distribution and trends. Glob. Change Biol. 27, 3605–3619 (2021).
Network, I. T. M. Towards a global understanding of tree mortality. New Phytol.https://doi.org/10.1111/nph.20407 (2025). A recent review on the research needed to better monitor and understand tree mortality.
Forzieri, G. et al. The Database of European Forest Insect and Disease Disturbances: DEFID2. Glob. Change Biol. 29, 6040–6065 (2023).
Forzieri, G. et al. A spatially explicit database of wind disturbances in European forests over the period 2000–2018. Earth Syst. Sci. Data 12, 257–276 (2020).
Schiefer, F. et al. UAV-based reference data for the prediction of fractional cover of standing deadwood from Sentinel time series. ISPRS J. Photogramm. Remote Sens. 8, 100034 (2023).
Skidmore, A. K. et al. Priority list of biodiversity metrics to observe from space. Nat. Ecol. Evol. 5, 896–906 (2021).
Torresani, M. et al. Reviewing the spectral variation hypothesis: twenty years in the tumultuous sea of biodiversity estimation by remote sensing. Ecol. Inform. 82, 102702 (2024).
Pacheco-Labrador, J. et al. Challenging the link between functional and spectral diversity with radiative transfer modeling and data. Remote Sens. Environ. 280, 113170 (2022).
de Conto, T., Armston, J. & Dubayah, R. Characterizing the structural complexity of the Earth’s forests with spaceborne lidar. Nat. Commun. 15, 8116 (2024).
Blickensdörfer, L., Oehmichen, K., Pflugmacher, D., Kleinschmit, B. & Hostert, P. National tree species mapping using Sentinel-1/2 time series and German National Forest Inventory data. Remote Sens. Environ. 304, 114069 (2024).
Harris, N. L. et al. Global maps of twenty-first century forest carbon fluxes. Nat. Clim. Change 11, 234–240 (2021).
Lesiv, M. et al. Global forest management data for 2015 at a 100 m resolution. Sci. Data 9, 199 (2022).
Bonannella, C. et al. Forest tree species distribution for Europe 2000–2020: mapping potential and realized distributions using spatiotemporal machine learning. PeerJ 10, e13728 (2022).
Santoro, M. et al. Global estimation of above-ground biomass from spaceborne C-band scatterometer observations aided by LiDAR metrics of vegetation structure. Remote Sens. Environ. 279, 113114 (2022).
Duncanson, L. et al. Spatial resolution for forest carbon maps. Science 387, 370–371 (2025). Potentials and limitations of forest biomass and carbon maps, and the interplay between uncertainty and the spatial resolution of the maps.
Schwartz, M. et al. FORMS: forest multiple source height, wood volume, and biomass maps in France at 10 to 30 m resolution based on Sentinel-1, Sentinel-2, and Global Ecosystem Dynamics Investigation (GEDI) data with a deep learning approach. Earth Syst. Sci. Data 15, 4927–4945 (2023).
Ferretti, M. et al. Advancing forest inventorying and monitoring. Ann. Forest Sci. 81, 6 (2024).
Calders, K. et al. Laser scanning reveals potential underestimation of biomass carbon in temperate forest. Ecol. Solut. Evid. 3, e12197 (2022).
Gessler, A. et al. Finding the balance between open access to forest data while safeguarding the integrity of National Forest Inventory-derived information. New Phytol. 242, 344–346 (2024). The article discusses the need to access private forest data to improve forest monitoring.
Päivinen, R. et al. Ensure forest-data integrity for climate change studies. Nat. Clim. Change 13, 495–496 (2023).
Schadauer, K. et al. Access to exact National Forest Inventory plot locations must be carefully evaluated. New Phytol. 242, 347–350 (2024).
Kairouz, P. et al. Advances and open problems in federated learning. Found. Trends Mach. Learn. 14, 1–210 (2021).
Schlegel, M., Scheliga, D., Sattler, K.-U., Seeland, M. & Mäder, P. Collaboration management for federated learning. In IEEE 40th Int. Conf. Data Engineering Workshops (ICDEW), 291–300 (2024).
Bonan, G. B. et al. Reimagining Earth in the Earth system. J. Adv. Model. Earth Syst. 16, e2023MS004017 (2024).
Scheel, M., Lindeskog, M., Smith, B., Suvanto, S. & Pugh, T. A. M. Increased Central European forest mortality explained by higher harvest rates driven by enhanced productivity. Environ. Res. Lett. 17, 114007 (2022).
Marie, G. et al. Simulating bark beetle outbreak dynamics and their influence on carbon balance estimates with ORCHIDEE r7791. EGUsphere 2023, 1–35 (2023).
Sabot, M. E. B. et al. Plant profit maximization improves predictions of European forest responses to drought. New Phytol. 226, 1638–1655 (2020).
Marie, G. et al. Simulating Ips typographus L. outbreak dynamics and their influence on carbon balance estimates with ORCHIDEE r8627. Geosci. Model Dev. 17, 8023–8047 (2024).
Kautz, M., Anthoni, P., Meddens, A. J. H., Pugh, T. A. M. & Arneth, A. Simulating the recent impacts of multiple biotic disturbances on forest carbon cycling across the United States. Glob. Change Biol. 24, 2079–2092 (2018).
Hanbury-Brown, A. R., Powell, T. L., Muller-Landau, H. C., Wright, S. J. & Kueppers, L. M. Simulating environmentally-sensitive tree recruitment in vegetation demographic models. New Phytol. 235, 78–93 (2022).
Buotte, P. C. et al. Capturing functional strategies and compositional dynamics in vegetation demographic models. Biogeosciences 18, 4473–4490 (2021).
Pilli, R., Alkama, R., Cescatti, A., Kurz, W. A. & Grassi, G. The European forest carbon budget under future climate conditions and current management practices. Biogeosciences 19, 3263–3284 (2022).
Rammer, W. et al. The individual-based forest landscape and disturbance model iLand: overview, progress, and outlook. Ecol. Model. 495, 110785 (2024).
Mahecha, M. D. et al. Detecting impacts of extreme events with ecological in situ monitoring networks. Biogeosciences 14, 4255–4277 (2017).
Nelson, J. A. et al. X-BASE: the first terrestrial carbon and water flux products from an extended data-driven scaling framework, FLUXCOM-X. EGUsphere 2024, 1–51 (2024).
Jung, M. et al. Scaling carbon fluxes from eddy covariance sites to globe: synthesis and evaluation of the FLUXCOM approach. Biogeosciences 17, 1343–1365 (2020).
Besnard, S. et al. Mapping global forest age from forest inventories, biomass and climate data. Earth Syst. Sci. Data 13, 4881–4896 (2021).
Son, R. et al. Integration of a deep-learning-based fire model into a global land surface model. J. Adv. Model. Earth Syst. 16, e2023MS003710 (2024).
ElGhawi, R. et al. Hybrid modeling of evapotranspiration: inferring stomatal and aerodynamic resistances using combined physics-based and machine learning. Environ. Res. Lett. 18, 034039 (2023).
Prapas, I. et al. TeleViT: teleconnection-driven transformers improve subseasonal to seasonal wildfire forecasting. Proc. IEEE/CVF Int. Conf. Computer Vision, 3754–3759 (2023).
Bauer, P., Stevens, B. & Hazeleger, W. A digital twin of Earth for the green transition. Nat. Clim. Change 11, 80–83 (2021).
Seneviratne, S. et al. Weather and Climate Extreme Events in a Changing Climate (Cambridge Univ. Press, 2021).
Suarez-Gutierrez, L., Müller, W. A. & Marotzke, J. Extreme heat and drought typical of an end-of-century climate could occur over Europe soon and repeatedly. Commun. Earth Environ. 4, 415 (2023).
Senf, C. & Seidl, R. Persistent impacts of the 2018 drought on forest disturbance regimes in Europe. Biogeosciences 18, 5223–5230 (2021).
Dosio, A., Migliavacca, M. & Maraun, D. How fast is climate changing? One generation is sufficient for unfamiliar heatwave characteristics to emerge in Europe. Climatic Change 178, 26 (2025).
Seidl, R. et al. Forest disturbances under climate change. Nat. Clim. Change 7, 395–402 (2017).
Luyssaert, S. et al. Trade-offs in using European forests to meet climate objectives. Nature 562, 259–262 (2018). A modelling study that concludes the need to be cautious when envisioning the use of forest for climate mitigation.
Layritz, L. S. et al. Disentangling future effects of climate change and forest disturbance on vegetation composition and land-surface properties of the boreal forest. EGUsphere 2024, 1–36 (2024).
Suvanto, S. et al. Understanding Europe’s forest harvesting regimes. Earths Future 13, e2024EF005225 (2025).
Seidl, R. & Senf, C. Changes in planned and unplanned canopy openings are linked in Europe’s forests. Nat. Commun. 15, 4741 (2024).
Anderegg, W. R. L., Kane, J. M. & Anderegg, L. D. L. Consequences of widespread tree mortality triggered by drought and temperature stress. Nat. Clim. Change 3, 30–36 (2013).
Messier, C. et al. For the sake of resilience and multifunctionality, let’s diversify planted forests! Conserv. Lett. 15, e12829 (2022).
Jactel, H., Moreira, X. & Castagneyrol, B. Tree diversity and forest resistance to insect pests: patterns, mechanisms, and prospects. Annu. Rev. Entomol. 66, 277–296 (2021).
Liu, D., Wang, T., Peñuelas, J. & Piao, S. Drought resistance enhanced by tree species diversity in global forests. Nat. Geosci. 15, 800–804 (2022).
Wessely, J. et al. A climate-induced tree species bottleneck for forest management in Europe. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-024-02406-8 (2024). Climate change is reducing silviculture options and may limit the viability of creating new mixed forest owing to the loss of climate-compatible tree species.
del Campo, A. D. et al. Assessing reforestation failure at the project scale: the margin for technical improvement under harsh conditions. A case study in a Mediterranean dryland. Sci. Total Environ. 796, 148952 (2021).
Mauri, A. et al. Assisted tree migration can reduce but not avert the decline of forest ecosystem services in Europe. Glob. Environ. Change 80, 102676 (2023).
Mahecha, M. D. et al. Biodiversity and climate extremes: known interactions and research gaps. Earths Future 12, e2023EF003963 (2024). The article discusses the importance of improving understanding of the role of biodiversity to buffer climate extremes.
Mahecha, M. D. et al. Biodiversity loss and climate extremes—study the feedbacks. Nature 612, 30–32 (2022).
Jucker, T., Bouriaud, O., Avacaritei, D. & Coomes, D. A. Stabilizing effects of diversity on aboveground wood production in forest ecosystems: linking patterns and processes. Ecol. Lett. 17, 1560–1569 (2014).
Müller, J. et al. Enhancing the structural diversity between forest patches—a concept and real-world experiment to study biodiversity, multifunctionality and forest resilience across spatial scales. Glob. Change Biol. 29, 1437–1450 (2023).
Jactel, H. et al. Tree diversity drives forest stand resistance to natural disturbances. Curr. For. Rep. 3, 223–243 (2017).
Vangi, E. et al. Stand age diversity (and more than climate change) affects forests’ resilience and stability, although unevenly. J. Environ. Manag. 366, 121822 (2024).
Mäkelä, A. et al. Effect of forest management choices on carbon sequestration and biodiversity at national scale. Ambio 52, 1737–1756 (2023).
Blattert, C. et al. Climate targets in European timber-producing countries conflict with goals on forest ecosystem services and biodiversity. Commun. Earth Environ. 4, 119 (2023).
Leng, Y. et al. Forest aging limits future carbon sink in China. One Earth 7, 822–834 (2024).
Senf, C., Sebald, J. & Seidl, R. Increasing canopy mortality affects the future demographic structure of Europe’s forests. One Earth 4, 749–755 (2021).
Pan, Y., Birdsey, R. A. & Phillips, O. L. New pathways for reducing global illegal logging. For. Ecol. Manag. 568, 122114 (2024).
Felton, A. et al. Varying rotation lengths in northern production forests: Implications for habitats provided by retention and production trees. Ambio 46, 324–334 (2017).
Himes, A., Betts, M., Messier, C. & Seymour, R. Perspectives: thirty years of triad forestry, a critical clarification of theory and recommendations for implementation and testing. For. Ecol. Manag. 510, 120103 (2022).
Vos, M. A. E. et al. The sustainability of timber and biomass harvest in perspective of forest nutrient uptake and nutrient stocks. For. Ecol. Manag. 530, 120791 (2023).
Rougieux, P., Pilli, R., Blujdea, V., Mansuy, N. & Mubareka, S. B. Simulating Future Wood Consumption and the Impacts on Europe’s Forest Sink to 2070 (2024).
Soimakallio, S. et al. Closing an open balance: the impact of increased tree harvest on forest carbon. Glob. Change Biol. Bioenergy 14, 989–1000 (2022).
Daigneault, A. et al. How the future of the global forest sink depends on timber demand, forest management, and carbon policies. Glob. Environ. Change 76, 102582 (2022).
Peng, L., Searchinger, T. D., Zionts, J. & Waite, R. The carbon costs of global wood harvests. Nature 620, 110–115 (2023).
Rougieux, P. et al. Pruning the wood economy or intensifying harvest on a smaller area to increase the EU forest carbon sink. Preprint at SSRN https://doi.org/10.2139/ssrn.5027118 (2024).
Martin, A. R., Domke, G. M., Doraisami, M. & Thomas, S. C. Carbon fractions in the world’s dead wood. Nat. Commun. 12, 889 (2021).
Mansuy, N. et al. Reconciling the different uses and values of deadwood in the European Green Deal. One Earth 7, 1542–1558 (2024).
Pan, Y. et al. The enduring world forest carbon sink. Nature 631, 563–569 (2024). A recent assessment of the world forest sink detailed by pool, regions and forest types.
Larjavaara, M. et al. Deadwood and Fire Risk in Europe (Publications Office of the European Union, 2023).
Dijkstra, J., Durrant, T., San-Miguel-Ayanz, J. & Veraverbeke, S. Anthropogenic and lightning fire incidence and burned area in Europer. Land 11, 651 (2022).
Orgiazzi, A., Ballabio, C., Panagos, P., Jones, A. & Fernández-Ugalde, O. LUCAS Soil, the largest expandable soil dataset for Europe: a review. Eur. J. Soil Sci. 69, 140–153 (2018).
Felton, A., Belyazid, S., Eggers, J., Nordström, E.-M. & Öhman, K. Climate change adaptation and mitigation strategies for production forests: trade-offs, synergies, and uncertainties in biodiversity and ecosystem services delivery in Northern Europe. Ambio 53, 1–16 (2024).
Barnes, M. L. et al. A century of reforestation reduced anthropogenic warming in the eastern United States. Earths Future 12, e2023EF003663 (2024).
Novick, K. A. & Barnes, M. L. A practical exploration of land cover impacts on surface and air temperature when they are most consequential. Environ. Res. Clim. 2, 025007 (2023).
Luyssaert, S. et al. Land management and land-cover change have impacts of similar magnitude on surface temperature. Nat. Clim. Change 4, 389–393 (2014).
Hoek van Dijke, A. J. et al. Shifts in regional water availability due to global tree restoration. Nat. Geosci. 15, 363–368 (2022).
Meier, R. et al. Empirical estimate of forestation-induced precipitation changes in Europe. Nat. Geosci. 14, 473–478 (2021).
Li, W. et al. Widespread increasing vegetation sensitivity to soil moisture. Nat. Commun. 13, 3959 (2022).
Chen, Z., Wang, W., Cescatti, A. & Forzieri, G. Climate-driven vegetation greening further reduces water availability in drylands. Glob. Change Biol. 29, 1628–1647 (2023).
Graf, A. et al. Joint optimization of land carbon uptake and albedo can help achieve moderate instantaneous and long-term cooling effects. Commun. Earth Environ. 4, 298 (2023).
Stoy, P. C. et al. The global distribution of paired eddy covariance towers. Preprint at bioRxiv https://doi.org/10.1101/2023.03.03.530958 (2023).
Mubareka, S. et al. The role of scientists in EU forest-related policy in the Green Deal era. One Earth 5, 10–13 (2022).
Migliavacca, M. & Ceccherini, G. Data and code for the reproducible workflow of Migliavacca et al., 2025. Securing the forest carbon sink for the European Union’s climate ambition. Zenodo https://doi.org/10.5281/zenodo.14900132 (2025).